

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: lug 15, 2025

Designing a Human-Drone Interaction: Insights from the AeroAssistant Framework

Franceschini, Riccardo

Publication date:
2024

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Franceschini, R. (2024). Designing a Human-Drone Interaction: Insights from the AeroAssistant Framework.
Technical University of Denmark.

https://orbit.dtu.dk/en/publications/9e9f514e-d16d-44ee-b91c-4a35073a7281

Doctor of Philosophy
Doctoral thesis in Photonics Engineering

Designing a Human-Drone Interaction:
Insights from the AeroAssistant Framework

Author: Riccardo Franceschini

Supervisor: Prof. Matteo Fumagalli
Co-supervisors: Prof. Ole Ravn & Prof. Julián Cayero Becerra

DTU Electro
Department of Photonics Engineering

Technical University of Denmark
Ørsteds Plads
Building 340

2800 Kongens Lyngby, Denmark

Summary
The need for efficient infrastructure inspection has grown due to significant annual
investments required for maintenance of the aiging infrastructure across Europe. Tra-
ditional inspection methods are not only time-consuming but also hazardous, under-
scoring the necessity for faster robotic solutions that can perform these tasks more
safely and efficiently. Unmanned Aerial Vehicles (UAVs) have emerged as versatile
tools in this domain, but their widespread adoption hinges on the ease and efficiency
of their operation where teloperation serves as de-facto the standard. For this reason
the thesis introduces AeroAssistant, a framework designed to improve the teleoper-
ation of UAVs trought a combination of shared autonomy and augmented reality
elements to ease the piloting enabling even non-expert pilot to control the UAV with
confidence.

Thus, the research addresses the problem of delivering an effective human drone inter-
action for aerial inspection from different aspects, creating in such way the building
blocks that will be used by AeroAssistant to provide a comprehensive enhanced tele-
operation experience. First, a novel method for efficiently retrieving a path capable of
optimizing a combination of environmental factors, which could range from obstacle
distance and terrain structure to environmental conditions, is proposed. Then, the
research shifted to proposing a UAV interaction paradigm for aligning with and fol-
lowing any surface geometry using a convenient interface that requires minimal user
intervention. Subsequently, the effectiveness of a collaborative navigation experience
was studied along with user evaluation, where the operator is only responsible for
defining the direction and velocity of the UAV while the proposed solution ensures
collision-free navigation. Lastly, the latest advancements in promptable segmenta-
tion models are exploited to create an interaction in which the operator efficiently
segments and inspects specific areas of interest, extracting a path capable of covering
the entire inspection area with just few clicks.

Finally, AeroAssistant is presented. An in depth analysis of the core of the framework
is provided, highlighting its architecture and how the different features proposed in
the previous papers are integrated as plugins along with other features. For each
plugin, an explanation of the integration is provided with both the user interaction
paradigm and the operator interface. The underlying features necessary for devel-
oping an effective augmented reality interaction are then proposed along with field

ii Summary

experiments and ongoing research.

Preface
The purpose of this thesis is to elucidate the PhD project and its corresponding re-
sults. The PhD thesis, entitled ”Designing a Human-Drone Interaction: Insights from
the AeroAssistant Framework,” was conducted from July 2021 to June 2024 under
the industrial PhD scheme at Eurecat: Technology Center of Catalunya, located in
Cerdanyola del Vallès, Barcelona, Spain. This research was undertaken under the
supervision of Matteo Fumagalli, Ole Ravn, and Julian Cayero Becerra. The project
was funded by a Marie Skłodowska-Curie PhD scholarship as part of the European
project Aero-Train (Marie Skłodowska-Curie Grant Agreement No. 953454). The pri-
mary objective of this PhD was to advance the Human-Drone interaction experience
within the context of aerial infrastructure inspection. The outcome of the research is
the AeroAssistant, a framework designed to facilitate intuitive and efficient interac-
tion between human operators and drones, ensuring safety, reliability, and ease of use
in various operational scenarios. The research conducted has led to the publication
of four conference papers, one workshop, and the submission of one journal article,
showcasing the innovative findings and contributions made during this PhD journey.
These publications reflect the rigorous scientific reearch and practical implications
of the work, aiming to influence future developments in the field of Human-Drone
interaction.

Kongens Lyngby, 27th June 2024

Riccardo Franceschini

iv

Acknowledgements
I would like to thank my advisor, Prof. Julian Cayero Becerra, and Prof. Matteo
Fumagalli for selecting me as a PhD student and giving me the opportunity and
freedom to pursue many interesting ideas. I would also like to extend my gratitude
to all my colleagues at Eurecat and the Early Stage Researchers in the Aero-Train
project for their invaluable support throughout this journey, as well as for the personal
connections that goes beyond the work environment. Last but not least, I would like
to thank my girlfriend Ginevra, my family, and all my friends for their unwavering
constant support over the past three years.

vi

List of publications
• Conference Paper : R. Franceschini, M. Fumagalli and J. Cayero Becerra,

”Learn to efficiently exploit cost maps by combining RRT* with Reinforcement
Learning,” 2022 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), Sevilla, Spain, 2022 [50]

• Conference paper : R. Franceschini, M. Fumagalli and J. Cayero Becerra,
”Enhancing Human-Drone Interaction with Human-Meaningful Visual Feedback
and Shared-Control Strategies,” 2023 International Conference on Unmanned
Aircraft Systems (ICUAS), Warsaw, Poland, 2023, pp. 1162-1167 [54]

• Workshop: R. Franceschini , M. Fumagalli, J. Cayero Becerra, Riding the
Rollercoaster: easing UAV Piloting Experience with XR and continuous plan-
ning (XR-ROB 2023 - Second International Workshop on ”Horizons of an Ex-
tended Robotics Reality” @ IEEE/RSJ IROS 2023) [55]

• Conference Paper: R. Franceschini, J. Rodriguez Marquez, M. Fumagalli and
J. Cayero Becerra, “Riding the Rollercoaster: Improving UAV Piloting Skills
with Augmented Visualization and Collaborative Planning” 2024 International
Conference on Unmanned Aircraft Systems (ICUAS), Chania, Greece, 2024 [56]

• Conference Paper : R. Franceschini, J. Rodriguez Marquez, M. Fumagalli,
and J. Cayero Becerra, “Point, Segment, and Inspect: Leveraging Promptable
Segmentation Models for Semi-Autonomous Aerial Inspection”: 33rd IEEE In-
ternational Conference on Robot and Human Interactive Communication (RO-
MAN), Pasadena, California, USA [79]

• Journal Paper: R. Franceschini, M. Fumagalli and J. C. Becerra, “AeroAs-
sistant : a modern and flexible UAV teleoperation framework”, submitted at
ACM Transaction on Human-Robot-Interaction [69]

viii

Abbreviations
HMD Head Mounted Display

UAV Unmanned Aerial Vehicle

MAVs Micro Aerial Vehicles

OMAVs Omnidirectional Micro Aerial Vehicles

ROS Robot Operating System

RC Remote Controller

POV Point of View

FPV First Person View

AA AeroAssistant

AR Augmented Reality

VR Virtual Reality

MR Mixed Reality

XR Extended Reality

BVLOS Beyond Line of Sight

QP Quadratic Program

SFC Safe Flight Corridor

SoC System on a Chip

ARM Advanced RISC Machine

TOPS Tera Operations per Second

NAS Neural Architecture Search

LLMs Large Language Models

x Abbreviations

ONNX Open Neural Network Exchange

SAM Segment Anything Model

RRT Rapidly Exploring Random Trees

PPO Proximal Policy Optimization

SD Standard Deviation

pr Robot Position

qr Robot Orientation

rg Rollercoaster Gain

rd Rollercoaster Direction

pi Point of Interest

ni Normal Point of Interest

pc Closest Point

pm Point on image plane

pd Point of destination

od Orientation of destination

S Robot States

sr Robot Status

K Camera Matrix

Contents
Summary i

Preface iii

Acknowledgements v

List of publications vii

Abbreviations ix

Contents xi

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Objectives . 3
1.3 AR,VR,MR & XR . 4
1.4 State of the art . 5
1.5 Summary . 10

2 Contribution 11
2.1 Efficient Cost-Aware Path Planning . 11
2.2 Collaborative Displacement Along Surfaces 13
2.3 Collaborative navigation with the Rollercoaster 15
2.4 Point Segment and Inspect . 18
2.5 AeroAssistant . 22

3 AeroAssistant Core 23
3.1 Robot Status . 24
3.2 Middleware . 25
3.3 Remote Control . 25
3.4 Manager Architectures . 26

3.4.1 Passive Managers . 27
3.4.2 Active Managers . 29

3.5 Plugins . 30

xii Contents

3.5.1 Lock to a point . 31
3.5.2 Move to a point . 33
3.5.3 Align and Follow Surface . 34
3.5.4 Rollercoaster . 36
3.5.5 Point to Segment to Plan . 37

3.6 Augmented Visualization . 39
3.6.1 Camera Model . 39
3.6.2 From Virtual to Real . 41
3.6.3 Interacting While Flying . 42

3.7 Running on Constrained devices . 43
3.8 Field Experiment . 46
3.9 Bringing the Pilot into MR headsets 49

4 Conclusion 53

Conclusion 53
4.1 Future Directions . 53

4.1.1 Swarm Management . 54
4.1.2 Immersive Interfaces . 54
4.1.3 Assisted Manipulation . 54
4.1.4 Natural Language Interaction 55

Appendices 57

Appendix A Articles 59

Bibliography 111

CHAPTER1
Introduction

Unmanned Aerial Vehicles (UAVs), thanks to their ability to move freely in space,
have emerged as versatile tools with applications ranging from aerial surveillance and
infrastructure inspection to disaster response. However, their widespread adoption
often relies on the ease and efficiency of their teleoperation as the human supervision
remain fundamental in ensuring safety. In this context, this thesis proposes AeroAs-
sistant, an innovative assistive UAV teleoperation framework designed to transform
the user experience for both expert and novice pilots. AeroAssistant combines shared
autonomy and augmented reality elements to simplify UAV operation, overcoming tra-
ditional limitations and empowering operators with tools to perform intricate tasks
with precision and confidence.

Throughout this thesis, we explore the conceptual foundations of shared autonomy
and augmented reality in UAV teleoperation, as well as their practical implemen-
tation within the AeroAssistant framework. Structured as a collection of papers,
this thesis explores the conceptualization, development, and evaluation of AeroAs-
sistant, offering insights into its design principles, functionalities, and applications.
The subsequent sections discuss the motivation behind this work (Sec. 1.1), the objec-
tives (Sec. 1.2), the distinctions among various paradigms of immersive visualization
(Sec. 1.3), and analyze the state of the art in teleoperation and aerial robot interac-
tion (Sec. 1.4). In Chapter 2, a summary of the papers included in Appendix A is
provided, while Chapter 3 focuses on the core approach, analyzing the adjustments
necessary to achieve effective human-drone interaction, showcasing field experiments,
and ongoing investigations. Finally, in Chapter 4, conclusions are drawn, and future
research directions are proposed.

1.1 Problem Statement
In recent years, there has been an increasing demand for the efficient assessment of
the condition of various components of civil infrastructure. According to projections
from the Organization for Economic Cooperation and Development (OECD), Europe
is expected to allocate a substantial €1.2 trillion annually between now and 2030 to
ensure the ongoing maintenance of its aging infrastructure [1]. This encompasses crit-
ical elements such as roads [2], bridges [3,4], power lines [5], solar plants [6], and wind

2 1 Introduction

turbines [7], among others. The importance of this assessment cannot be overstated,
particularly considering the substantial investments required for maintenance and
upkeep. Inspections typically involve a broad spectrum of activities, ranging from
visually identifying defects like cracks or corrosion (Figure 1.1(b)) to non-destructive
testing (NDT) . In NDT, sensors (e.g., ultrasonic sensors, Figure 1.1(a)) come into
contact with surfaces, such as tanks in oil & gas facilities or the lightning protection
systems (LPS) in wind turbines, to analyze potential structural defects.

((a)) Classical NDT test with a rope
((b)) UAV wind turbine inspection

Figure 1.1. Different inspection situations

These operations are inherently time-consuming due to the extensive footprint
of the facility being inspected and risky as to perform such inspections may require
erecting scaffolding or using ropes. Hence, automation and robotization of such tasks
present viable solutions by eliminating human involvement in hazardous operations,
while also enabling the deployment of sensors and tools to perform intricate activities
in remote and difficult-to-access environment.

Due to their ability to navigate freely and access spatially challenging areas, UAVs
are increasingly preferred over traditional inspection methods, thanks to their capac-
ity for customization with specialized sensors and tools tailored for specific tasks.
However, given the safety-critical nature of the environments where these inspections
occur, such as oil&gas facilities, power lines or nuclear plants, human pilots are still
required to oversee and control the operations. One of the main problem is that,
operating in these environments presents a significant challenge, even for experienced
pilots, who may have to control the UAV far from their line-of-sight, limiting the
overall situational awareness in cluttered and hazardous scenarios (Figure 1.2).

Within the world of professional pilots, a study by [8] interviewed pilots about
their perspectives on human-drone interaction, focusing on what matters most when
piloting UAVs. The study highlighted that safety is the most relevant priority for the
pilots and establishing clear communication between the drone and the operator is
a primary concern for them. This emphasis on safety underscores the importance of
improving trust between the operator and the technology [9], ultimately encouraging
the operator to utilize features with confidence in the drone’s actions.

1.2 Research Objectives 3

Figure 1.2. Pilot and inspector performing blade inspection

In light of these insights, particularly in operational contexts, there is a growing
anticipation for a form of robot interaction where the operator can guide the UAV at
a high level, issuing commands such as inspecting specific surfaces or maintaining dis-
tance and alignment with particular targets, all while retaining control of the overall
situation. This concept aligns with the framework proposed in [10], which categorizes
different levels of autonomy in human-robot interactions. The desired interaction
paradigm in such scenarios is identified as ”Shared Control With Human Initiative”
wherein the operator maintains decision-making authority while the UAV executes
actions with minimal oversight.

Incorporating mechanisms like these, alongside augmented interfaces as demonstrated
in [11], has proven effective in enhancing user acceptance through augmented visual-
ization, becoming pivotal in establishing efficient interaction mechanisms.

1.2 Research Objectives
As discussed previously in section Sec. 1.1, the aim is to develop improved interac-
tion methods between the UAVs and the operators, with the idea of simplifying the
pilot’s experience decreasing their mental load while ensuring they still feel in control.
To achieve this goal, this thesis research is centered on two interconnected aspects:
shared autonomy routines and augmented reality interfaces.

The first aspect involves creating customizable shared interaction schemes. These
schemes provide autonomous and semi-autonomous routines that operators can trig-
ger and control during flight.

The second aspect, augmented reality interfaces, addresses the need to establish trust
between the operator and the UAV. Each shared autonomy routine developed is ac-
companied by a specific visualization to communicate UAV intentions and actions.
This blend of enhanced visualization and cooperation is integrated into a teleoper-
ation framework called AeroAssistant. AeroAssistant features an internal modular
architecture that enables the implementation of various enhanced shared autonomy

4 1 Introduction

algorithms. Additionally, it proposes interaction patterns with a remote controller to
offer a familiar interaction scheme.

The ultimate research objective is to develop a system that enables both expert
and non-expert pilots to conduct complex UAV operations confidently and efficiently.
This objective aims to address the research question: ”How can we enhance the effec-
tiveness and intuitiveness of modern UAV systems?”

1.3 AR,VR,MR & XR
Before entering into the domain of aerial teleoperation, where augmented reality
(AR) and virtual reality (VR) serve as crucial tools, it’s prudent to clarify the ter-
minology, especially for those less familiar with these concepts. Augmented Reality
(AR) enriches the real-world environment by superimposing digital information onto
it, enhancing our perception and interaction with the physical world. Conversely,
Virtual Reality (VR) immerses users in entirely synthetic environments, effectively
disconnecting them from their surroundings and transporting them to a virtual world.
Mixed Reality (MR), a more subtle concept, blends the virtual and physical worlds
seamlessly, allowing digital and real-world elements to coexist and interact in real
time. MR offers a spectrum of experiences, from fully immersive digital overlays on
the physical environment to partial digital enhancements. Extending beyond these
individual terms, Extended Reality (XR) serves as an overarching category, encom-
passing AR, VR, MR, and potential future developments (Figure 1.3). During the
thesis, AR and VR will be analyzed as valid tools for effective aerial interaction. How-
ever, the proposed work focuses on AR, showcasing novel interaction paradigms that
are further enhanced by AR visualization.

Figure 1.3. Visual representation of the different realities [12]

1.4 State of the art 5

1.4 State of the art
The landscape of human-robot interaction, especially in teleoperation scenarios, has
seen a variety of approaches aimed at improving user experience and system perfor-
mance. An in depth review of the numerous approaches has been carried out in [13]
where the authors have categorized the various interaction schemes that have been
explored for fostering human robot interaction. The categorization thought compre-
hend all the possible interaction patterns with robots including those methods not
suitabe for human drone interaction. Thus a more dedicated investigation of different
interaction schemes developed is here proposed. Numerous studies have explored var-
ious strategies, such as XR interfaces, shared control mechanisms employing haptic
devices, integration of deep learning agents, as well as the utilization of path planning
and collision avoidance systems. Specifically focusing on drone interaction, these ap-
proaches can be categorized broadly in different high-level categories.

Assisted Standard Pilot Interfaces: The first category encompasses systems
akin to those discussed in [14–16], where authors have investigated the impact of
an enhanced teleoperation interaction, resembling standard interaction with the op-
erator controlling the UAV’s velocity. However, in this case a collision avoidance
algorithm is implemented between the operator and the UAV to adjust the operator’s
commands if they pose a collision risk (Figure 1.4). Another viable interaction is
proposed in [17]. In this work, the authors introduce the concept of teleoperation
constrained to predefined virtual surfaces. In such interaction, the operator defines
the structure of the surface, which can be a wall or a cylinder depending on the use
case. The UAV is then constrained to move along these surfaces, with the operator
controlling the movement along them.

Figure 1.4. Collision avoidance with [16]

6 1 Introduction

Interfaces for Point and Move: Studies such as those elaborated in [18–24] in-
troduce interfaces tailored for controlling nearly autonomous drones. These methods
typically require the use of tablets or head-mounted displays (HMDs), with interac-
tion focused on visualizing 3D data collected by the drone or the drone’s trajectory
overlaid on a physical model in front of the operator (Figure 1.5). The primary in-
teraction involves defining a destination point or an entire plan and visualizing the
UAV movement in space through the proposed interfaces, which depict a miniatur-
ized world. The main drawback of those approaches is that does not account for the
possibility of the operator to temporarily gaining control in case of failure or perform
minor adjustments in the trajectory.

Figure 1.5. Virtual Surrogate by [19]

Haptic Control for Trajectory Manipulation: Alternative approaches, as ex-
amined in [25–30] (Figure 1.6), concentrate on employing haptic devices to adjust
trajectories, enriching control experiences by offering diverse haptic feedback schemes
to users. These methods engage the operator in the UAV control process, empowering
them to execute vertical and lateral displacements along a predefined trajectory while
receiving haptic feedback concerning obstacle and platform constraints. The incorpo-
ration of haptics in teleoperation is particularly pertinent because through non-visual
cues, the operator gains immediate perception of potential platform limitations or
surrounding obstacles based on the proposed implementation.

1.4 State of the art 7

Figure 1.6. Haptic Teleoperation from [30]

Deep Learning Assistance: Interesting teleoperation methodologies are pro-
posed in [31–33] (Figure 1.7). Here, the authors investigate the utilization of learning
algorithms to anticipate common trajectories, such as turns, straight lines, or cir-
cular shapes, by interpreting the operator’s control inputs from a standard joypad.
An agent is positioned between the operator and the UAV, assuming control when
it identifies the operator’s attempt to execute one of these trajectories, thereby exe-
cuting precise movements. This approach is particularly intriguing as the operator
continues with a familiar teleoperation approach in which they are confident, while
in the background, an autonomous agent runs and takes control only when a learned
trajectory is recognized, rendering its actions invisible to the operator.

Figure 1.7. Autocomplete interaction concept [31]

Gaze and Body Control Navigation: Other approaches have also explored natu-
ral interaction through gaze and body gestures to achieve a more intuitive experience.
Works such as [34–37] have investigated the possibility of controlling UAVs through

8 1 Introduction

body movements (Figure 1.8(a)). Some utilize embedded devices like smart gloves,
while others employ computer vision algorithms to detect specific movements. These
interactions rely on mapping high-level commands to actions such as takeoff, landing,
or executing certain trajectories like circular, lateral, or vertical displacements. Con-
trolling the UAV with these approaches implicitly requires delegating finer control to
the UAV itself, as they rely on sending high-level commands. Notable commercial
implementations of body gestures are proposed in [38, 39], where semi-autonomous
drones are controlled through gestures for tasks like capturing images or executing
specific shots.

Moreover, intriguing interaction methods are introduced in [40, 41], where the op-
erator’s gaze is detected via a Head-Mounted Display (HMD) and utilized to discern
the operator’s intentions (Figure 1.8(b)), adjust the UAV trajectory, or designate a
point for UAV movement. These approaches are particularly interesting because the
eyes serve as a precise mechanism for indicating intention, and they can be integrated
with other interaction mechanisms such as standard RC controls.

((a)) Body gesture control from [35]
((b)) Gaze intention control [40]

Figure 1.8. Different Gaze and Body control interactions

AR-assisted navigation: Several studies have explored the use of AR to enhance
the navigation experience. For instance, in [41, 42], the authors investigated the im-
pact of AR as a blending mechanism between the operator’s perspective and the
UAV’s perspective (Figure 1.9(a)). They focused on visualizing what the UAV per-
ceives on the operator’s headset, integrating this information with the operator’s
real-world environment accurately. This integration provides immediate feedback
to the operator regarding the drone’s visual perception and its spatial localization,
thereby enhancing operator situational awareness. On the other hand, research such
as [43] propose to augment the camera with spatial elements to highlight possible
points of interest or insert artificial obstacles, thereby combining virtual and real-
world approaches. Additionally, works like [44] proposed an AR-based bird’s-eye
view, enabling the operator to view the drone from a third-person perspective, en-

1.4 State of the art 9

hancing spatial understanding of the surrounding environment.
Meanwhile, other studies have explored the usage of AR interfaces to visualize, con-
trol, and plan different configurations of omnidirectional micro aerial vehicles (OMAVs)
in space, as seen in [45,46]. These OMAVs, due to tilting propellers, offer an intriguing
solution by generating thrust in any direction, thus enabling hovering and reaching
arbitrary orientations in space (Figure 1.9(b)).

((a)) UAV AR colocation [41] ((b)) OMAV position and trajectory control [46]

Figure 1.9. Different AR interaction approaches

VR Teleoperation: Another approach involves VR teleoperation interfaces, with
a focus on aerial manipulation, as explored in [47, 48]. VR control is particularly
relevant as it allows operators to embody themselves inside the UAV, resulting in
a high level of spatial awareness for performing manipulation activities depending
on the integrated effector (Figure 1.10). Additionally, more commercially oriented
approaches utilize VR headsets for controlling FPV drones [49]. In this scenario,
the operator experiences the UAV’s first-person view, ensuring maximum awareness,
while retaining full control of the drone through an RC controller.

Figure 1.10. AeroVr Interaction [47]

10 1 Introduction

1.5 Summary
In summary, this chapter serves as a general introduction to the topics covered in
the thesis. It begins by introducing the problem of aerial inspection, highlighting
why UAVs are key components in performing inspection and maintenance operations
efficiently and safely. From Sec. 1.4, an overview of the current human-drone in-
teraction paradigms is given, showcasing the efforts of the research community in
proposing innovative teleoperation experiences while often focusing on narrow as-
pects of human-drone interaction. This highlights the need for a comprehensive and
customizable human-drone interaction framework capable of combining AR elements
with a shared-interaction algorithm to propose a familiar yet enhanced teleoperation
experience.

The research conducted during the PhD, detailed in the subsequent chapters, focuses
on proposing algorithms and visualization schemes aimed at simplifying common
tasks in UAV teleoperation, particularly in the context of aerial inspection. This
is achieved without compromising the operator’s sense of control. Additionally, the
proposed features are integrated into a general yet efficient framework named AeroAs-
sistant, designed from the ground up with efficiency and flexibility in mind, allowing
room for future expansion of both the shared-interaction algorithm and augmented
visualization.

CHAPTER2
Contribution

This chapter summarizes the main contributions of the research conducted, utilizing
the published results which are then reprinted in the Appendix A. The scientific pro-
duction comprises 4 published conference papers, 1 workshop paper and 1 journal
article which has been submitted and is currently under the review process. The
conducted research encompasses a range of topics, from intelligent path planning
techniques capable of adapting to various cost-maps, to the implementation and eval-
uation of advanced shared autonomy algorithms. These algorithms serve as founda-
tional building blocks within the AeroAssistant architecture. The following sections
are then summarizing the published works in temporal order.

2.1 Efficient Cost-Aware Path Planning
Motivated by the fact that safety is among the biggest concerns of UAV pilots, the
first work published at the 2022 IEEE International Symposium on Safety, Security,
and Rescue Robotics is:

(P1:) R. Franceschini, M. Fumagalli and J. Cayero Becerra, ”Learn to efficiently
exploit cost maps by combining RRT* with Reinforcement Learning,” 2022 IEEE
International Symposium on Safety, Security, and Rescue Robotics (SSRR), Sevilla,
Spain, 2022 [50]

This work aims to address the problem of efficiently exploiting cost-maps by
proposing RL-RRT⋆, a sample-efficient and cost-aware sampling method based on
RRT⋆ [51]. The approach leverages a deep-learning agent which receives as input the
information of the cost maps from both a global and local perspective. Cost maps
can represent distances to obstacles, as well as distances to the goal or environmental
factors such as elevation or wind conditions if known. The information from the cost
maps is then extracted and used to guide the sampling process in subportions of the
map, following a standard RRT⋆ sampling process. After sampling n points within
the confined region, the network is queried again to redirect the sampling area. A
representation of the architecture is provided in Figure 2.1, while the algorithm’s
pseudocode is given in Algorithm 1.

The method was trained using a reinforcement learning approach employing Prox-
imal Policy Optimization (PPO) [52] due to its data efficiency and reliability. The

12 2 Contribution

Algorithm 1 Environment Step
1: procedure env.step(action)
2: % get the sampling area from the agent action
3: boundaries← env.get_sampling_bound(action)
4: % perform n step of RRT⋆ within the boundaries
5: state, reward, done← env.plan_n_step(boundaries)
6: % return the information to the agent
7: return state, reward, done

8: end procedure

C
o
n
v
2
D

5
x
5

C
o
n
v
2
D

L
in

e
a
r

L
in

e
a
r

R
e
L
U

R
e
L
U

R
e
L
U

3
x
3

[n,gd,gd]

[n,ld,ld]

Visual Encoder

C
o
n
v
2
D

3
x
3

C
o
n
v
2
D

L
in

e
a
r

L
in

e
a
r

R
e
L
U

R
e
L
U

R
e
L
U

3
x
3

Visual Encoder

L
in

e
a
r

S

t

a

t

e

T
a
n
h

L
in

e
a
r

L
in

e
a
r

T
a
n
h

Fusion Layer

S
o
fm

a
x

Concatenate

A
c
ti

o
n
s
 P

ro
b

Categorical Distribution

Action

RRT*
perform n steps

Define sampling area

EnvironmentAgent

Figure 2.1. The RL-RRT⋆ architecture. The agent receive as input state of the planner
plus global and local maps. Using this information the agent drives the RRT⋆ sampling by
providing one of the 4 directions, then n nodes are sampled and the loop is repeated until a
solution or the maximum iteration is reached.

simulation environment comprised of 2D randomly generated maps, and the agent’s
objective was to balance the combined cost of the path along with the number of
iterations necessary to find a path to the goal. Consequently, the agent learned to
efficiently exploit the costmaps, finding viable paths to the goal in fewer iterations
and with lower cumulative costs over the path. Subsequently, the method was com-
pared against RRT⋆, a sampling-biased version of RRT⋆ where parts of the map with
lower costs were more likely to be sampled, and T-RRT⋆ [53], a method that incorpo-
rates cost maps into its sampling strategy by accepting or rejecting new nodes based
on their cost variation. A visual comparison of the retrieved paths is presented in
Figure 2.2, demonstrating the ability of the proposed method to limit the sampling
process to only the necessary region while balancing the cost map, represented in this
case by the obstacle distance.

2.2 Collaborative Displacement Along Surfaces 13

((a)) RRT⋆ path ((b)) T-RRT⋆ path ((c)) RL-RRT⋆ path

((d)) RRT⋆ tree ((e)) T-RRT⋆ tree ((f)) RL-RRT⋆ tree

Figure 2.2. Path retrieval comparison between the different approaches

2.2 Collaborative Displacement Along Surfaces
The second proposed work is motivated by the often encountered need during inspec-
tions to maintain a certain distance and orientation with respect to the inspected
surface. However, controlling the UAV in such a manner is particularly challenging,
especially when operations are conducted far from the operator or beyond line of
sight (BVLOS), where spatial understanding is limited and weather conditions may
be difficult to perceive and counteract. Thus, a system to address this challenge is
proposed in:

(P2) R. Franceschini, M. Fumagalli and J. Cayero Becerra, ”Enhancing
Human-Drone Interaction with Human-Meaningful Visual Feedback and
Shared-Control Strategies,” 2023 International Conference on Unmanned Aircraft
Systems (ICUAS), Warsaw, Poland, 2023, pp. 1162-1167, doi:
10.1109/ICUAS57906.2023.10156190. [54]

The proposed work aims to create an interaction paradigm in which the operator
receives enhanced camera feedback represented in an AR fashion, providing informa-
tion regarding alignment with the facing surfaces and the current closest point (see
Figure 2.3).

14 2 Contribution

Figure 2.3. Representation of UAV reference frames and vectors used to retrieve the
alignment information

The operator is then presented with a user-friendly interface for autonomously
aligning the UAV with the nearest surface and executing lateral and vertical displace-
ments while preserving orientation and distance. The overall architecture representing
the proposed interaction is depicted in Figure 2.4.

Preprocess Point
Cloud

Point Cloud

Odometry
Alignment
Information

Occupancy
Information

Sensor Specific
Information

Processing Layer

Operator UI

UAV

User
Input

Information to
Color-Scheme

Estimate Position

Figure 2.4. The schema depicts the interaction between the operator and the UAV trough
a tablet interface. Video feedback from the UAV is shown in the upper left corner, with
surface points colored according to UAV alignment. The bottom left panel provides a 3D
visualization of the UAV reference frame and colored point cloud data.

The visualization provided to the operator offers immediate understanding of the
geometric structure of the facing surface. Based on the normal orientation, a heat-
map-based color representation is overlaid onto the camera stream. A comparison

2.3 Collaborative navigation with the Rollercoaster 15

between a situation where the UAV is aligned to the surface is presented in Figure 2.5.
In Figure 2.5(a) the UAV is aligned and the closest point is reported in green, along
with the normal heatmap highlighting the aligned points with a brighter color scheme.
In contrast, Figure 2.5(b) shows the closest point reported in red, indicating misalign-
ment with the surface, and the heatmap representation has a darker color scheme.
Thus the operator can lock the position and orientation of the drone with respect
to any surface and control vertical or lateral displacement and the magnitude of the
movement with a convenient pad over the graphical interface.

((a)) Aligned ((b)) Not Aligned

Figure 2.5. Alignment visualization under two different circumstances

2.3 Collaborative navigation with the Rollercoaster
The third work aims to address the challenge of intuitive and safe navigation in any
environment by establishing a collaborative navigation paradigm. In this paradigm,
the operator controls the direction and velocity at which the UAV should move, while
a planner ensures safe navigation. Throughout the navigation process, the UAV
maintains the operator aware through an enhanced interface. The primary goal of
this proposed solution is to improve the operator’s situational awareness, perception,
as well as the safety and efficiency of UAV navigation.

(W3) Riccardo Franceschini, Matteo Fumagalli, Julian Cayero Becerra, Riding the
Rollercoaster: easing UAV Piloting Experience with XR and continuous planning
(XR-ROB 2023 - Second International Workshop on ”Horizons of an Extended
Robotics Reality” @ IEEE/RSJ IROS 2023) [55]

(P3) Riding the Rollercoaster: Improving UAV Piloting Skills with Augmented
Visualization and Collaborative Planning”: Riccardo Franceschini, Javier Rodriguez
Marquez, Matteo Fumagalli, and Julian Cayero Becerra, ICUAS 2024 [56]

This work integrates a planner [57] that guarantees real-time safe path retrieval
through quadratic programming (QP) featuring the Safe Flight Corridor (SFC) con-

16 2 Contribution

cept. The SFC comprises a collection of convex, overlapping polyhedra that model
the available free space and establish a continuous path from the robot’s current po-
sition to the goal destination. By incorporating the SFC, a series of linear inequality
constraints are introduced into the QP, thereby enabling real-time path planning.
This path retrieval is then coupled with the mapping method proposed in [58], which
utilizes a sliding window approach for planning in local space, thereby circumventing
the complexities and drift associated with global approaches. The operator then in-
teracts with the system using a Sony DualSenseTM Controller [59]. By pressing the
left trigger, the Rollercoaster is activated, and adjusting the pressure a parameter
rg ∈ [0, 1] called rollercoaster gain is used to linearly scale the velocity along the path
according to the the maximum allowed velocity by the platform. Using the right
thumbstick, the operator steers the temporal destination point pd, which is utilized
by the planning algorithm for continuous retrieval of a safe path. This point is posi-
tioned at a fixed distance of k m in front of the UAV, and the direction in which pd is
placed relative to the UAV position is controlled by a parameter rd ∈ [−1, 1], known
as the rollercoaster direction, as illustrated in Figure 2.6.

((a)) Controller Interaction

((b)) Operator Interface

Figure 2.6. Rollercoster user interaction

The overall interaction paradigm showcasing the architecture with the separate
components for drawing the information over the camera stream and moving to the
next goal is given in Figure 2.7.

Results also include a user testing phase, during which 35 participants were re-
cruited from the research institution and through word of mouth. The participants’
ages ranged between 24 and 61 years old (Mean = 33.61, SD = 9.33). They were
requested to rate their UAV piloting experience on a scale of 1 to 5, where 1 indi-
cated no experience and 5 denoted proficiency (Mean = 1.77, SD = 1.19). Each user
was asked to perform a navigation test in a highly cluttered simulated environment
with and without the Rollercoaster. Then, the users were asked to complete the
NASA-TLX questionnaire [60], and their success rate was analyzed (see Figure 2.11),
showcasing an average double performance improvement (see Figure 2.8(a)), with up

2.3 Collaborative navigation with the Rollercoaster 17

Figure 2.7. Diagram depicting the interaction between the operator and the UAV.

to four times better results when the pilot considered themselves non-experts (see Fig-
ure 2.8(b)). The NASA-TLX survey (see Figure 2.9) showcased lower overall demand
in navigating with the Rollercoaster compared to manual piloting experience.

((a)) Success Rate ((b)) Success Rate by Experience

Figure 2.8. User Study Results

Empirical evaluations were also conducted to demonstrate the effectiveness of
Rollercoaster with a real UAV. The evaluation was performed using a FPV-like drone
equipped with a Voxl2 [61], which integrates PX4 [62], and a RealSense d435 [63]
serving as the primary depth sensor. The test setup is illustrated in Figure 2.10,
while the operator’s perspective is shown in Figure 2.11(a), and the trajectory with
the operator’s commands is depicted in Figure 2.11(b).

18 2 Contribution

Figure 2.9. Nasa-TLX results. Error Bars are standard error

Figure 2.10. Experimental Setting

((a)) Operator Interface. ((b)) UAV trajectory and user commands.

Figure 2.11. Experimental Evauluation

2.4 Point Segment and Inspect
The fourth work aims to simplify the process of visually defining and inspecting
various types of infrastructure. Examples of infrastructure that often require visual
inspections include bridges, wind turbines, and industrial facilities. During the inspec-

2.4 Point Segment and Inspect 19

tion mission, it is crucial to ensure coverage of the infrastructure and maintain data
consistency, such as capturing images at a consistent distance and orientation. How-
ever, achieving this level of precision can be challenging, even for expert pilots. To
facilitate UAV piloting and guarantee data integrity, the following work is proposed:

(P4) “Point, Segment, and Inspect: Leveraging Promptable Segmentation Models for
Semi-Autonomous Aerial Inspection” by Riccardo Franceschini, Javier Rodriguez
Marquez, Matteo Fumagalli, and Julian Cayero Becerra, accepted at RO-MAN 2024,
Pasadena, California, USA [50]

This method aims to exploit the latest advancment in promptable segmentation
models, such as the Segment Anything Model (SAM) [64], to establish a collabora-
tive visual inspection paradigm. In this paradigm, the operator defines the object
they want to inspect by specifying positive and negative points over the continuously
streamed camera feed. This process provides visual feedback over the camera stream,
displaying information about the selected points and the forecasted segmented area.
Once a satisfactory segmentation is achieved, the operator can trigger a pipeline to
extract the spatial representation of the segmented object from the retrieved depth
information. This representation is then used to generate a path over the segmented
surface by solving the traveling salesman problem with a 2-opt algorithm [65] (Fig-
ure 2.14). The operator then triggers UAV movement to the points, which can be fully
autonomous or manually controlled by the operator for translation between points.
To orchestrate this interaction, a set of statuses is proposed as shown in (2.1).

S = {Free_Flight,
Aim_To_Surface,
Plan_To_Surface,
Auto_Move_To_Surface,
Manual_Move_To_Surface}

(2.1)

A schema representing the interaction between the UAV and operator through the
proposed approach is depicted in Figure 2.12. This diagram illustrates the interaction
dynamics between the operator and the UAV. The suggested module receives input
points, status indications, or manual waypoint commands issued by the operator,
while simultaneously acquiring odometry data and camera information from the UAV.
Thus, the proposed layer is responsible for handling perception, segmentation, and
path planning while keeping the operator informed through visual cues.

The operator’s control of the UAV is overviewed in Figure 2.13, showcasing the
actions needed to control the system, from point definition with the thumbstick to
status control with the arrows.

Throughout the operation, the operator is kept informed with information rep-
resenting the controlled and selected points along the proposed segmentation Fig-
ure 2.14(a), the retrieved path Figure 2.14(b), and the completion percentage while
moving Figure 2.14(c).

20 2 Contribution

Planning

Pilot Interface

Camera

Odometry

Position
Controller

Segmentation Model

Status

Waypoints Control

Region Extraction

2-opt TSP

Points

Wp Control

Status Manager

Environment

Detection

Point Drawing

Path Drawing

Segmentation Drawing

Visualization

Figure 2.12. Diagram depicting the interaction between the operator and the UAV

Figure 2.13. Interaction paradigm for Point and Segmentation

To assess the approach, evaluations were carried out in both a photo-realistic
environment using Flightmare [66] running as segmentation model SAM-HQ [67] and
on a physical platform powered by Voxl2 [61] with FastSAM [68] as segmentation
model. Anecdotal evaluations were conducted against a pipe mockup and a wall
patch, as depicted in Figure 2.15, demonstrating the system’s capability to accurately
detect, segment, and inspect the desired object with minimal human intervention in
the decision-making process.

2.4 Point Segment and Inspect 21

((a)) Point Selection ((b)) Path Visualization

((c)) Path following execution

Figure 2.14. Representation of the different interaction steps

((a)) Pipe Selection ((b)) Wall Patch Selection

((c)) Pipe path ((d)) Wall Patch path

Figure 2.15. Point and Segment experimental evaluation

22 2 Contribution

2.5 AeroAssistant
The latest work introduces AeroAssistant, a framework capable of amalgamating prior
research into a teleoperation framework, which offers a familiar teleoperation experi-
ence while simultaneously providing advanced functionalities akin to those previously
presented. Thus, the AeroAssistant architecture and capabilities are detailed in:

(J1) “AeroAssistant: A Modern and Flexible Teleoperation Framework” by Riccardo
Franceschini, Matteo Fumagalli, and Julian Cayero Becerra, submitted at ACM
Transaction on Human-Robot Interaction [69]

The fundamental concept underlying AeroAssistant is to propose a modular, effi-
cient, and flexible architecture for robot teleoperation. Consequently, the framework’s
general architecture is illustrated in Figure 2.16, comprising three main modules: the
Middleware, responsible for providing platform-agnostic high-level interfaces such as
those outlined in [70]; the RemoteControl, tasked with interacting with the operator
control device and interpreting user commands into inputs meaningful for the system;
and AeroAssistant itself, which interacts with UAV sensors and other processes while
offering advanced features, including those previously mentioned, to the operator. A
more in-depth explanation of the underlying structure, is provided in Chapter 3. This
chapter explains how various features are implemented, the adjustments made for ef-
fective human-drone interaction, shares experiences from deploying the AeroAssistant
in the field, and outlines current areas of investigation.

Middleware

Pilot Interface

RemoteControl

Figure 2.16. AeroAssistant comunication architecture

CHAPTER3
AeroAssistant Core

This chapter explores the AeroAssistant (Figure 3.1), providing a detailed analysis
of the proposed framework. It also discusses the deployment experience across differ-
ent platforms and environmental conditions, as well as current research areas. This
expands on the following work:

(J1) “AeroAssistant: A Modern and Flexible Teleoperation Framework” by Riccardo
Franceschini, Matteo Fumagalli, and Julian Cayero Becerra, submitted at ACM
Transaction on Human-Robot Interaction [69]

Figure 3.1. AeroAssistant Logo

At first, the RobotStatus (Sec. 3.1), Middleware (Sec. 3.2), and RemoteControl
(Sec. 3.3) components are introduced. Subsequently, we examine the framework’s
architecture (Sec. 3.4) and plugin definition (Sec. 3.5). We then discuss the ad-
justment required for effective interaction with the operator during flight (Sec. 3.6),
examine modifications made to facilitate operation on low-power devices (Sec. 3.7),
and review the interaction proposed during the field test in the final demo of the
Aero-Train project (Sec. 3.8). Finally, we conclude by presenting a glimpse of cur-
rent research with a communication bridge for MR interfaces (Sec. 3.9), aimed at
future immersive interfaces. The framework underwent testing on various hardware
platforms, including LattePanda Delta3 [71], Intel Nuc [72], and Voxl2 [61]. Despite
performance variations across these platforms, AeroAssistant consistently managed
all computations, maintaining a satisfactory framerate of 30Hz on the operator in-
terface. The proposed framework requires a version of C++ 17 or higher and relies
solely on Open3D [73] for spatial data manipulation and OpenCV [74] for image ma-
nipulation. For AeroAssistant to function, it is assumed that the UAV has the ability

24 3 AeroAssistant Core

to perceive its three-dimensional environment, possesses an RGB camera, and can
estimate its position and orientation in space as pr ∈ R

3 and qr ∈ H.

Figure 3.2. A schematic representation of the UAV frame configuration

3.1 Robot Status
To ensure seamless coordination within the system and reflect these changes in both
the UAV behavior and the remote pilot interface, it is essential that all components
remain informed about the current status. Therefore, we propose the implementation
of a state machine capable of encoding the various statuses of the drone. The robot’s
status sr consists of a set of base states S, which are independent of any plugin
implementation, each representing a specific status:

S = {Idle,
TakeOff ,

Land,

Free_flight}

(3.1)

These statuses enable pilots to maintain basic control over the UAV, similar to a
standard teleoperation mechanism, encompassing functionalities such as autonomous
landing and takeoff. To manage synchronization among the various actors of the
framework, we employ a request-reply architecture, with the Middleware acting as
an intermediary between operator control and AeroAssistant. This setup ensures ef-
ficient message passing and confirmation delivery, as depicted in Figure 3.3, thereby
ensuring correct synchronization among all actors across different statuses and allow-
ing bidirectional changes in the framework status from both AeroAssistant and Re-
moteControl. This architecture grants operators the flexibility to consistently modify
states, thereby maintaining full control of the system. Simultaneously, it empow-
ers the AeroAssistant to execute autonomous behaviors that may involve a sequence

3.2 Middleware 25

of internally coordinated states. These statuses are promptly communicated to the
operator and visualized in the interface, ensuring transparency and awareness.

M
id

dl
ew

ar
e

Req :
RC_MI

Req :
MI_AA

Rep:
AA_MI

Rep:
MI_RC

Req :
AA_MI

Req:
MI_RC

Rep :
RC_MI

Rep :
AA_MI

Change status from Remote Control to AA

Change status from AA to RemoteControl

R
em

ot
eC

on
tro

l

Figure 3.3. Status change communication architecture

3.2 Middleware
The interaction Middleware, situated within the UAV, plays a central role in maintain-
ing communication among all involved entities, including remote pilot input, AeroAs-
sistant, and the UAV itself. Its primary task is to establish an abstraction layer, akin
to the one proposed in [70], which exposes common topics tailored to the platform’s
specifics, such as specialized routines for arming or issuing commands to the platform.
This layer serves as a crucial facilitator for synchronizing communication among all
actors, as elucidated in Section 3.1. Through this synchronization, the Middleware
enables both RemoteControl and AeroAssistant to publish and subscribe to high-level
topics for sending waypoints, arming, or initiating specific routines, while seamlessly
managing lower-level adjustments specific to the platform’s requirements under the
hood.

3.3 Remote Control
We consider now the RemoteControl feature of the framework, which is essential
for delivering a seamless and intuitive navigation experience while providing instant
access to the framework’s capabilities. Utilizing its widespread availability and ease of
customization, we have chosen to utilize the SONY DualSenseTM Wireless Controller
[59] as our reference point. However, integrating other RC controllers is equally
feasible without any complications.

To operate, the remote controller must be connected to a companion computer,
responsible for managing all message passing with the Middleware. Usually, the
computer and the operator’s receiving device are the same, although this is not a
strict requirement. Given AeroAssistant’s aim to provide a flexible framework that
offers an enhanced yet familiar user experience, the behavior of the controller needs

26 3 AeroAssistant Core

to adapt depending on the state sr. Thus, by default, the operator is presented with
the following configuration, as illustrated in Figure 3.4.

Figure 3.4. Standard interaction paradigm

In this setup, the operator can take control and arm the UAV using the left
arrow button, which sets the UAV status to sr = Idle. Pressing the triangle button
transitions the status to sr = TakeOff, initiating an autonomous takeoff operation at
a predefined height h m. Upon pressing the triangle button again, the status shifts
to sr = Land, prompting autonomous landing by descending. To initiate standard
teleoperation in position control, the operator presses the circle button, setting the
status to sr = Free_Flight.

3.4 Manager Architectures

RemoteControl

U
AV

Middleware

RobotStatus

O
perator

ImageManager

ImageManagerCOM

PathManager

PathManagerCOM

CloudManager

CloudManagerCOM

PositionManager

PositionManagerCOM

VisalizationManagerCOM

VisalizationManagerControlManager

ControlManagerCOM

DepthInformationOdometry Camera Path

Figure 3.5. AeroAssistant Architecture

3.4 Manager Architectures 27

This section provides a thorough examination of the framework architecture shown
in Figure 3.5. The AeroAssistant comprises a series of specialized managers, each
dedicated to a specific task. The communication between these managers and other
components outside of AeroAssistant is abstracted through a series of communication
managers. This abstraction ensures potential interoperability with various communi-
cation paradigms such as ROS1 [75], ROS2 [76], and ZMQ [77], while maintaining
the underlying implementation agnostic and thus interoperable.

The managers can be categorized in two macro categories, the passive managers and
the active managers. The passive managers (Sec. 3.4.1) are tasked with efficiently
retrieving and processing incoming information from the UAV. They then expose
meaningful data to the active managers (Sec. 3.4.2). Conversely, the active managers
are responsible for sending actual commands to the UAV and keeping the operator
informed during operation.

3.4.1 Passive Managers
The passive manager encompasses all activities that do not involve interaction with
either the UAV or the operator. Therefore, in this category, managers such as Po-
sitionManager, ImageManager, PathManager, and CloudManager are included, as
highlighted in Figure 3.6.

RemoteControl

U
AV

Middleware

RobotStatus

O
perator

ImageManager

ImageManagerCOM

PathManager

PathManagerCOM

CloudManager

CloudManagerCOM

PositionManager

PositionManagerCOM

VisalizationManagerCOM

VisalizationManagerControlManager

ControlManagerCOM

DepthInformationOdometry Camera Path

Figure 3.6. Passive Managers

These managers serve as crucial intermediaries between the processes and sensors
operating within the UAV, playing a central role in processing incoming informa-
tion and providing accessible methods for other managers and processes to effectively

28 3 AeroAssistant Core

utilize the processed data. This architectural design offers significant advantages, par-
ticularly in reducing overhead and enabling parallel computation, which is especially
valuable when onboard computation resources are limited. Ultimately, this aims to
deliver a seamless experience for the operator.

Internally, these managers process their data using a queue system with a maxi-
mum capacity of n elements, coordinated with a mutex system to handle concurrent
resource allocation and ensure synchronization between data retrieval and process-
ing. A schematic depiction of a generic passive manager is provided in Figure 3.7,
illustrating the data flow. Initially, raw UAV information is converted into a generic
format independent of the communication paradigm used. Subsequently, the data un-
dergoes a filtering process to render it usable by the rest of the system. The filtered
data is then stored in the CleanData queue, while the RawData queue continues to
receive updates. It’s crucial to note that these processes, including data reception
and filtering, occur in parallel, with resource coordination facilitated by mutexes.

Depending on the specific manager, various types of data may need extraction,
possibly combining information from other managers. Consequently, internally, man-
agers implement necessary functions to extract data, which could range from esti-
mating the difference in orientation to the closest point based on current position
and spatial information to generating a traversal plan over a segmented point cloud.
Once extracted, the information is stored and exposed through a series of GetData
methods, ensuring proper concurrency management through mutexes.

UAV Raw
Information

C
le

an
 a

nd
Fi

lte
r

Manager COM Conversion

RawData CleanData

Extract N
Information

Mutex

M
an

ag
er

 In
fo

rm
at

io
n

Mutex

ExtractedData

Mutex

Expose Information

GetData

1...N
+1

Figure 3.7. General Architecture of a Passive Manager

3.4 Manager Architectures 29

3.4.2 Active Managers
In the teleoperation framework, in addition to the passive managers, another essential
part includes the active managers. Specifically, these are the ControlManager and the
VisualizationManager, as shown in Figure 3.8. These managers play dynamic roles
in the system, each serving distinct yet complementary functions.

RemoteControl

U
AV

Middleware

RobotStatus

O
perator

ImageManager

ImageManagerCOM

PathManager

PathManagerCOM

CloudManager

CloudManagerCOM

PositionManager

PositionManagerCOM

VisalizationManagerCOM

VisalizationManagerControlManager

ControlManagerCOM

DepthInformationOdometry Camera Path

Figure 3.8. Active Managers

The ControlManager assumes a pivotal role in the teleoperation setup, acting as
the channel through which commands are conveyed to the UAV. It serves as the
interface between the operator and the UAV, facilitating real-time control and ma-
neuvering. By interfacing with the Middleware layer, the ControlManager ensures
seamless communication between the operator’s commands and the UAV’s actions, ef-
fectively translating high-level directives into actionable instructions for the vehicle’s
systems. Conversely, the VisualizationManager assumes the responsibility of main-
taining the operator’s awareness regarding the ongoing processes within the UAV.
Serving as the visual feedback mechanism, it provides real-time updates and status
reports to the operator. Through intuitive graphical representations, the Visual-
izationManager enhances the operator’s situational awareness regarding the current
UAV status and active processes. This allows operators to make informed decisions
and adjustments as necessary, empowering them to effectively monitor and supervise
the UAV’s operations. The ControlManager and the VisualizationManager together
form the active managerial component of the teleoperation framework, serving as the
bridge between human operators and unmanned aerial vehicles. They work together
to facilitate efficient and effective teleoperation, empowering operators to gain precise
control over UAVs while maintaining a comprehensive understanding of their oper-
ational environment. Therefore, these Managers receive information from both the

30 3 AeroAssistant Core

other passive managers and the operator, translating this information into actions for
both the UAV and the operator interface. Consequently, they do not directly inter-
face with sensor data but instead collect information from all other involved actors.
Their behavior is directly linked to the status sr. Thus, a generic scheme of the active
managers is proposed in Figure 3.9. These two processes of visualization and control
are executed separately and coordinated according to sr as described in Section 3.1.
The ControlManager retrieves the current UAV position and any necessary spatial
information from the passive manager. This information may vary from simple ori-
entation offsets to a series of waypoints. It is then combined with sr and user input
to determine the desired UAV position, which is converted to the correct commu-
nication format and sent to the Middleware. Meanwhile, the VisualizationManager
retrieves the CameraImage and DataToVisualize from the PassiveManagers. The in-
formation to visualize can range from simple text or geometric structures to more
complex 3D point clouds that need to be projected onto the 2D plane. To achieve
this, the CameraInfo along with sr are used to craft the enhanced camera feedback,
which is converted to the correct communication format and ultimately sent to the
operator.

PassiveManagers

R
ob

ot
S

ta
tu

s

Middleware Operator

Manager COM Conversion Manager COM Conversion

Desired Position UserInput

CameraImageUAV Position

sr
Retrieve new

position

Spatial
Information

sr

ImageToSend

DataToVisualize

C
am

er
aI

nf
o

Image
Compositor

C
on

tro
lM

an
ag

er

V
isualizationM

anager

Figure 3.9. General Architecture of the Active Managers

3.5 Plugins
This section aims to expose the functionalities currently being deployed within the
AeroAssistant, showcasing the interaction paradigms used both from a visualization
point of view and from a remote control perspective. It also describes how S is ex-
panded to include multiple functionalities and how those additional states are used
to adjust visualization and remote control behaviors. Therefore, the following sec-

3.5 Plugins 31

tion addresses some of the plugins implemented, some of which have already been
explained and evaluated in separate publications. For this reason, the evaluation now
focuses more on the integration with the framework rather than the functionality and
performance itself.

3.5.1 Lock to a point
A common action required when piloting a UAV is the ability to select a point on the
camera feedback, lock onto that point, and maintain orientation and position towards
it, counteracting possible degradation in position estimation, akin to visual servoing.
Therefore, this feature is integrated within the framework. To manage the different
states, first, the robot’s states are updated as follows:

S = {S ∪ {Choose_Target,Following_Target}} (3.2)

The alternation between sr = Choose_Target and sr = Following_Target is carried
out by the operator with the controller schema depicted in Figure 3.10. Pressing the
up arrow changes the status to sr = Choose_Target. After the arrow up is pressed

Figure 3.10. Controller interaction for tracking a point

for the first time, the operator defines the area to track by maneuvering an overlaid
window of dimensions n×n pixels using the right thumbstick over the camera stream,
as demonstrated in Figure 3.10. Once the area of interest is delineated, the operator
initiates a Kernel Correlation Filter [78] (KCF) by pressing the arrow up on the
controller, covering the previously defined patch. This filter facilitates tracking of
any image patch across the camera stream, provided there are sufficient features to
track between consecutive frames. Throughout the operation, the operator receives
visual cues overlaid on the camera stream, as illustrated in Figure 3.11, featuring
varying visualizations contingent upon the success or failure of the tracking process.

The center of the tracked patch is then utilized to extract the position pi ∈ R
3 and

normal ni = {nix, niy, niz} of the point of interest, relying on the depth information
retrieved from the previously described CloudManager. Subsequently, the point and
normal estimations are averaged over k data samples to mitigate potential drift in

32 3 AeroAssistant Core

((a)) Succesfull tracking ((b)) Failed tracking

Figure 3.11. Different tracking visualizations

position and orientation, yielding the averaged values pi and ni. These averaged
values are then utilized to determine the desired position and orientation of the UAV,
computed as a position at a distance γ m from the point of interest.

pd = pi + γni (3.3)

od = −ni (3.4)

The extracted values are then used to maintain the position pr and orientation
qr of the UAV in front of pi. During the all process the operator is also aware trough
a 3D panel showcasing the extracted pd as in Figure 3.12.

Figure 3.12. 3D panel visualization

Furthermore, interaction can be enhanced by integrating an autonomous detec-
tion mechanism responsible for autonomously retrieving pi. This leaves the operator
only responsible for initializing detection and ensuring the correctness of the entire ap-
proach. More details on autonomous detection are provided in Sec. 3.8. A schematic
representation of the state transition is shown in Figure 3.13.

3.5 Plugins 33

Free Flight
Choose_Target

Following_Target

Figure 3.13. Transition between different states S for tracking a point

3.5.2 Move to a point
Another relevant plugin developed adds the feature of selecting a point in the image
plane and guide the aircraft towards it, ending up at a position that is at a user-
defined distance γ m from the obstacle and oriented towards the point of interest. In
this case, the robot’s state is updated as follows:

S = {S ∪ {Aiming_To_Target,Moving_To_Target}} (3.5)

The selection and the change of status to sr = Aiming_To_Target are triggered
by pressing the square button on the controller. In this visualization, the operator
has to define a point pm ∈ R

2 on the image plane.

Figure 3.14. Controller interaction for moving to a point

As shown in Figure 3.14, the operator is presented with a visualization that en-
codes information about the normal orientation of the surface within the proximity
of pm using a rainbow color-scheme, with pm itself represented as a yellow dot, as
in Figure 3.15(a). This provides immediate feedback on the geometric structure of
the selected area and the feasibility of the selected point. Then, the point pd and
orientation od are extracted as in (3.3) and (3.4).

Given the UAV’s need to navigate autonomously in space, a planner and map-
ping approach capable of retrieving collision-free paths are essential. Consequently,
the same methods previously described [57] and [58] used in the the Rollercoaster
(Sec. 2.3) are adopted. The retrieved path is visualized in the 3D panel as shown in

34 3 AeroAssistant Core

((a)) Camera Visualization when aim-
ing to a point pm

((b)) 3D visualization with the extracted region,
retrieved path and pm

Figure 3.15. Different move to a point visualizations

Figure 3.15(b). Upon pressing the square button again, the state transitions to sr =
Moving_To_Target, initiating the path following procedure. Consequently, the Path-
Manager provides the path, defined as a set of N points P = {pr, p0, p1, . . . , pd} ∈ R

3,
to the ControlManager. The ControlManager then guides the UAV by transmitting
the next waypoint pk+1 only when the UAV is within r m from pk. A schematic
representation of the transition between states is given in Figure 3.16

Free Flight
Aim_To_Target

Moving_To_Target

Figure 3.16. Move to a point state S transitions.

3.5.3 Align and Follow Surface
Another relevant feature deployed within AeroAssistant is the ability to align against
any surface maintaining distance and attitude with respect to it, while also being able
to perform vertical and lateral displacements. Detailed descriptions of this plugin are
provided in previous work [54] and briefly summarized in Sec. 2.2. In this section, the
focus will be on the integration with the system and adaptation to fully integrate it
with respect to the original work. Thus, to include this behavior within the system,
the set of possible statuses is updated as follows:

S = {S ∪ {Align,Lock_To_Surface}} (3.6)

3.5 Plugins 35

The interaction with the remote controller is depicted in Figure 3.17. Unlike
the previous implementation where the operator triggered functions with a button
on a table-like interface, in this case, the operator triggers the following functions
with a controller. We argue that this implementation contributes to a more natural
experience and interaction with the system compared to the previously published
interaction as the operator does not have to switch to another control paradigm. To
align with the closest point pc the UAV position pr, the operator simply presses the
cross symbol on the controller, setting sr = Align. This computes the yaw offset η◦

to align with the closest point pc and sends the updated orientation to the position
controller. During operation, the camera feedback highlights the closest point pc as a
circle on the camera stream, with colors changing to reflect the angle offset η◦ (green
if |η◦| < 5◦,yellow between 5◦ ≤ |η◦| ≤ 15◦, and red otherwise).

Figure 3.17. Control interaction for align and translate

To change the status to sr = Lock_To_Surface, the operator initiates and main-
tains the status by pressing the right trigger on the controller. This automatically
stores the current distance dt

pc

to the closest point pc at time t, and aligns the UAV to
the closest point as described earlier. Unlike in previous work, where translation was
binary (either lateral or vertical), the operator now has more fine-grained control,
with lc, vc both in the range [−1, 1] representing lateral and vertical displacement
inputs. This allows for precise and controlled velocity adjustments of the UAV’s
movement. The current position pt

r = [pt
x, pt

y, pt
z] at time t + 1 is updated as:

pt+1
y = pt

y + δlc (3.7)
pt+1

z = pt
z + δvc (3.8)

with δ m representing the maximum translation. Then, given the new position pt+1,
a new closest point pc

t+1, its distance dt+1
pc

, and normal nc
t+1 are estimated using

the current point cloud. The alignment angle η◦ is retrieved and used to adjust to
the new position while the distance is corrected as follows:

pt+1
x = pt

x + (dt
pc

− dt+1
pc

)nt+1
x (3.9)

The updated position pt+1
r and orientation η◦ are sent to the position controller.

Throughout this process, the operator is informed of the current alignment via a

36 3 AeroAssistant Core

heatmap visualization of the UAV’s attitude relative to the facing surface, in ad-
dition to the previously described dot representing the closest point. A schematic
representation of the transition between states is given in Figure 3.18.

Free Flight

Align

Lock_To_Surface

Figure 3.18. Align and Lock to Surface state transitions.

3.5.4 Rollercoaster

Piloting an aircraft is inherently challenging, especially when navigating in cluttered
environments with limited situational awareness. To address this issue, the Roller-
coaster [56] previously described in Sec. 2.3 is integrated within the system as a plugin.
In this method, the pilot controls the direction and velocity of the UAV while a plan-
ner in the background is responsible for retrieving collision-free paths and navigating
towards a goal. This proposed interaction paradigm has been named Rollercoaster,
and accordingly, the set of statuses is updated as follows:

S = {S ∪ {Rollercoaster}} (3.10)

To trigger sr = Rollercoaster, the operator simply uses the left trigger, which is
also used to control the velocity. Releasing it will re-establish sr = Free_Flight. As
previously described in Sec. 3.5.2, the same planner [57] along with the mapping pre-
sented in [58] are used due to their capabilities of reliably and efficiently retrieving a
safe path. During navigation, the operator is kept informed with an enhanced visual-
ization (Figure 3.19), which displays the retrieved path (yellow line) over the camera
feedback. The current rg is shown as a green line over the path. Additionally, as de-
scribed in Sec. 2.3, a spatial representation of the UAV, along with the reconstructed
map and retrieved path, is provided (Figure 2.6(b)).

3.5 Plugins 37

Figure 3.19. Interaction paradigm Rollercoaster

A schematic representation of the transition between states is given in Figure 3.20

Free Flight
Rollercoaster

Figure 3.20. Align and Lock to Surface state S transitions.

3.5.5 Point to Segment to Plan

Performing visual inspections of object surfaces can be inherently complex, especially
when ensuring coverage and alignment with the surfaces for accurate data collection.
Therefore, another plugin developed, studied in detail in [79] and in Sec. 2.4, focuses
on simplifying this task. This plugin aims to leverage the latest advancements in
promptable segmentation models, such as [64, 67, 68], to streamline the process of
defining visible surfaces or objects that require inspection.

Initially, the operator defines an object for inspection by specifying points over the
camera image that indicate areas to include or exclude from segmentation, performed
by the segmentation model. The model then proposes the segmented area to the
operator, who can confirm or refine the segmentation further. Once a satisfactory
segmentation is achieved, the spatial geometry of the object is retrieved and used
to extract a series of waypoints covering the entire surface. These waypoints are
ordered from the PathManager solving the travel salesman problem using the 2-opt
[65] algorithm to obtain the shortest path. Given the complexity of the interaction

38 3 AeroAssistant Core

paradigm, multiple statuses are added:

S = {S ∪ {Aim_To_Surface,
Plan_To_Surface,
Auto_Move_To_Surface,
Manual_Move_To_Surface}}

(3.11)

These statuses are orchestrated with the controller interaction scheme represented in
Figure 3.21.

Figure 3.21. Control interaction for Segment and Plan

Pressing the arrow down switches the state to sr = Aim_To_Surface, allowing the
operator to define the points used for prompting the model through the thumbstick.
Pressing the arrow down again changes the status to sr = Plan_To_Surface, where
a spatial representation of the segmented surface is extracted, and a traversal plan at
a distance k m facing the segmented surface is proposed to the operator.

To initiate movement, the operator presses the arrow down again, transitioning
the status to sr = Auto_Move_To_Surface. Subsequently, the UAV autonomously
follows the list of waypoints as described in Sec. 3.5.2. Since the operator may
want to retain control or spend more time at a single waypoint or inspect a cer-
tain spot again, pressing the arrow down button again changes the state to sr =
Manual_Move_To_Surface. At this point, pressing the left and right arrows moves
the UAV forward or backward along the list of waypoints, while pressing the circle
button returns to sr = Free_Flight. A clearer representation of the status changes is
provided in Figure 3.22.

3.6 Augmented Visualization 39

Figure 3.22. This scheme represents the transition between different states (S), with the
downward arrow button responsible for switching between states and a circle used to regain
control

3.6 Augmented Visualization
Interacting with the UAV through camera feedback poses challenges, especially when
dealing with a constantly moving camera feed. Without gimbal or camera stabiliza-
tion, this dynamic environment can significantly impact the operator’s experience.
Implementing AR solutions to maintain spatially coherent elements in the operator’s
feedback is essential to alleviate these problems. However, existing XR frameworks,
such as [80–82], are not ideally suited for this scenario. These frameworks are pre-
dominantly designed for portable devices such as smartphones, tablets, or HMDs,
encompassing their entire pipeline from state estimation to visualization.

Therefore, motivated by the desire to minimize dependencies within AeroAssistant,
some fundamental features essential for AR visualization are implemented. These
includes accurately representing spatial information within the camera plane and the
ability to maintain spatial anchors consistently across consecutive frames, even un-
der camera displacement. These features ensure the seamless integration of objects
such as path or point cloud representation within the AR environment, enhancing
the overall user experience.

3.6.1 Camera Model
The primary objective of an AR system is to accurately represent an object’s posi-
tion in virtual space relative to the image plane of the camera used to perceive the
environment. Achieving this necessitates a thorough understanding of the camera’s
functionality and characteristics. Accordingly, the camera is typically described using
the Pinhole camera model [83,84], depicted at a high-level in Figure 3.23.

This model consider that light passing through a pinhole projects an inverted
image onto the image plane. A point P = {x1, x2, x3} ∈ R

3 is then related to its

40 3 AeroAssistant Core

Figure 3.23. Pinhole Camera Model

equivalent on the image plane, O = {y1, y2} ∈ R
2, through the focal distance f as

follows:
(

y1

y2

)

=
f

x3

(

x1

x2

)

(3.12)

Here, f represents the distance from the origin to the camera plane. However,
the model described is applicable to analog cameras; digital cameras differ slightly,
requiring the introduction of additional parameters for accurate mapping. While in
analog images, the image plane coordinates have their origin at the image center where
the x3 axis intersects the image plane, digital image coordinates usually originate from
the upper-left corner of the image. Thus, the parameters cx and cy account for the
potential translation between image plane and digital image coordinates. Hence, 2D
points in the image plane and those in the image are offset by a translation vector
[cx, cy]T :

(

y1

y2

)

=
f

x3

(

x1

x2

)

+

(

cx

cy

)

(3.13)

Furthermore, it’s essential to consider that images are typically expressed in pixels,
necessitating adjustment via a scaling factor k and l (representing units conversion
along the two directions of the image plane, when k = l, the camera is said to have
square pixels). The updated equation is:

O =

(

y1

y2

)

=
f

x3

(

kx1

lx2

)

+

(

cx

cy

)

=

[

fk x1

x3

+ cx

fl x2

x3

+ cy

]

=

[

α x1

x3

+ cx

β x2

x3

+ cy

]

(3.14)

However, for convenience, the camera characteristics are often represented using a
matrix formulation that encodes the information into the camera matrix. This matrix
describes the camera model and operates on homogeneous coordinates:

3.6 Augmented Visualization 41





y1

y2

x3



 =





α 0 cx 0
0 β cy 0
0 0 1 0













x1

x2

x3

1









(3.15)

This matrix can be further decomposed as:




y1

y2

x3



 =





α 0 cx

0 β cy

0 0 1





(

I 0
)

P = K
(

I 0
)

P (3.16)

Here, K is commonly referred to as the camera matrix. This model could be further
expanded to consider lens distortion or camera skewness; however, for conciseness,
these factors are not included.

3.6.2 From Virtual to Real
To enhance the operator experience and facilitate interaction with the UAV, the
AeroAssistant is tasked with translating spatial information retrieved by the UAV into
the operator’s camera stream. As depicted in Figure 3.24, the AeroAssistant receives
information from passive managers in the world frame that requires translation into
the camera frame to be correctly represented. This translation is known from the
odometry information, which tracks the UAV’s current position relative to the initial
global frame. Subsequently, the translated data is projected onto the raw camera
images using camera information, and finally, it is transmitted to the communication
manager for conversion.

PassiveManagers

Operator

Manager COM Conversion

V
is

ua
liz

at
io

nM
an

ag
er

R
obotS

tatus

ImageToSend

worldframe

tx : camframe

tx+1 : camframe

object

World to Camera
Translation

object in worldframe

Camera
Info

Camera
Image sr

Image Compositor

object
in camframe

object
projection

Figure 3.24. Mapping from 3D to camera

42 3 AeroAssistant Core

Such approach of maintaining the processed data in world frame and then translat-
ing to camera frame at visualization time is necessary to allow correct representation
of the data with respect to the current point of view as in Figure 3.25 where the
retrieved inspection path is correctly represented over the segmented door indepen-
dently from the current UAV position.

((a)) Path visualization at t = ω ((b)) Path Visualization at t = ω + φ

Figure 3.25. Path visualization under different camera position

3.6.3 Interacting While Flying
Ensuring accurate data translation is not only imperative for visualization during
operator interaction but also fundamental when activating the segmentation model
during flight, as elaborated in Sec. 3.5.5. Throughout the flight, the UAV experiences
inherent oscillations even when attempting to maintain a stable position. Without
the compensatory measures outlined in Sec. 3.6.2, this oscillation poses two intercon-
nected challenges. Firstly, as previously discussed, incorrect perception arises for the
operator regarding the prompt made. Failure to update the point’s position results
in a disparity between its perceived location in the camera plane and its actual po-
sition. Secondly, the segmentation network relies heavily on the accuracy of these
prompts within the 2D image. Inaccuracies in updating these prompts lead to er-
roneous queries. Consequently, at every frame, the list of queried points undergoes
reprojection and updating to align with the camera frame and subsequently relayed
to the segmentation model. The final result is a point which is correctly updated and
represented in the operator camera feedback (Figure 3.26) and such change in posi-
tion is reflected also in the prompted points. Since the AeroAssistant is tought to run
on any device the inference of the segmentation model is considered external to the
all framework while the two parts are connected trough the comunication managers
agreeing on a specific message structure exchange.

This approach is particularly suitable, as deep learning models typically rely heav-
ily on the hardware integrated into the UAV. By adopting this method, we can
achieve a flexible architecture capable of adapting to various hardware configurations.
A schematic representation of the communication flow among all involved actors is

3.7 Running on Constrained devices 43

((a)) Prompting at t = ω ((b)) Prompting at t = ω + φ

Figure 3.26. Prompting at different moment in time

provided in Figure 3.27, illustrating the data flow for maintaining the consistency of
the prompted points across different consecutive frames. Thus, the CloudManager is
responsible for maintaining a list of prompted points in the world frame along with
their labels. It also utilizes the odometry and camera information from the other pas-
sive manager to continuously translate the points, first to the camera frame and then
to project them onto the camera plane before sending them to the visual segmentation
node.

worldframe

tx : camframe

tx+1 : camframe

points

World to Camera
Translation

Segmentation Model

Prompted Points

2D Segmentation

Point Update

Pr
om

pt
 P

oi
nt

s
M

es
sa

ge

Camera Plane
Prompted Points

Camera
Info

points
in camframe

Se
gm

en
te

d
Ae

ra

Operator

Middleware

Se
le

ct
ed

Po
in

ts points in worldframe

CloudManager

DepthInformation UAV

DepthConversion

Depth
Information

Segmented
Area

Region Extraction

Visual
Segmentation

Operator Point
Selection

OdometryPositionManager

PositionManagerCOM

ImageManager

ImageManagerCOM

C
am

er
aI

nf
o

Figure 3.27. Segmentation Points update schema

3.7 Running on Constrained devices
The dimensions of a UAV can vary significantly, from lightweight multirotors weigh-
ing just a few grams to huge helicopters or fixed-wing platforms capable of carrying
several kilograms of payload. However, as flying platforms with limited power capa-

44 3 AeroAssistant Core

bilities, the ability to carry out necessary computations on smaller devices can offer
unique advantages. Therefore, finding the optimal balance between weight, power con-
sumption, and capacity is crucial for extending flight time and ultimately enhancing
the range of tasks that can be accomplished. Thus, within the domain of computing
boards commonly used in the aerial platform, examples include the Nvidia Jetson
Orin [85], Raspberry PI4 [86], Intel Nuc [72], and LattePanda Delta3 [71], among
others. Each of those boards has its advantage or disadvantage which could range
from capabilities of running easily advanced deep learning algorithm for the Nvidia
Jetson Orin thanks to its Cuda [87] compatibility, to compatibility with any existing
software as the Intel Nuc with its x86 architecture passing by price and board dimen-
sion advantages as in the LattePanda Delta3 and Raspberry PI4. In this section, we
discuss our experience of running the AeroAssistant, particularly the segmentation
pipeline described in Sec. 3.5.5 over the Voxl2 [61] a board that has dimensions com-
parable to a US quarter of a dollar (Figure 3.28) while capable of delivering 15 TOPS
thanks to the SoC Qualcomm QRB5165 [88], which features the Neural Process Unit
(NPU) for accelerated neural network inference which require further adjustments
compared to a Cuda compatible GPU. The focus will then shift to the adjustments

Figure 3.28. Voxl2 board [61]

necessary to run deep learning models on embedded hardware, as the core of AeroAs-
sistant has been tested on LattePanda Delta3, Intel Nuc, Nvidia Jetson Orin Nano
and Voxl2 without requiring any modifications to the framework. This demonstrates
the capability to maintain a satisfactory control frequency for the UAV and provide
a 30Hz video feedback to the operator.

3.7 Running on Constrained devices 45

Researchers have worked to improve the real-time performance of deep learning mod-
els using various techniques. Among the most common is distillation [89], which
involves training a smaller, more specialized network to learn from a larger, typically
more resource-intensive or general model [90]. Other approaches attempt to alter
the architecture of the model to achieve the same task. For example, FastSam [68]
modifies the underlying architecture compared to the original SAM [64] by employing
instance segmentation, similar to YOLO-ACT [91], followed by a hard-coded segmen-
tation selection. This modification, in contrast to the encoder-decoder architecture
of SAM, achieves significantly faster performance. Furthermore, techniques such as
Neural Architecture Search (NAS) [92–94] aim to automate the search for network ar-
chitectures based on various criteria, including network accuracy, inference time, and
network size. These approaches iteratively adjust the network until a Pareto-optimal
network meeting the specified requirements is found. The final common approach
is quantization [95], which is also the one we are going to deploy. This method in-
volves initially training the network with high-precision weights, typically using float
32, then converting those weights to lower-precision equivalents such as float 16 or
integer 8. This process drastically reduces network size and inference time at the
potential cost of accuracy loss, which might be negligible depending on the task and
performance of the original network.

Depending on the chosen hardware platform for inference, it may be necessary to
select a specific inference framework that supports the platform. Popular frameworks
include PyTorch [96] and TensorFlow [97], which are interoperable thanks to the
Open Neural Network Exchange (ONNX) [98], serving as a generic, interoperable,
and industry-standard framework for runtime. Moreover, these popular frameworks
have their optimized counterparts for mobile inference, namely ExecuTorch [99] and
TensorFlow Lite [100], developed with efficiency in mind, featuring minimal memory
footprint and operations suitable for microcontrollers.

In our case, the Voxl2 features a Tensorflow Lite inference engine capable of ex-
ploiting the NPU of the Qualcomm SoC. As previously mentioned in Sec. 2.4 for the
implementation onboard FastSAM was used as it stands out for its tradeoff between
accuracy and inference time. Therefore the original network is at first converted to
ONNX an then translated to Tensforlow Lite using the tool onnx2tf [101] which is
used to perform also quantization to float 16, this process allowed to obtain a in-
ference time of ∼ 100ms which is sufficient to maintain a satisfactory interaction
considering also the decoupled visualization and inference processes which hide the
underlying computation maintaining a stable 30 Hz video streaming. Before being
usable, the raw retrieved output of the network underwent a Non-Maximum Sup-
pression [102] to extract all predicted masks, which were then passed to the prompt
encoder responsible for accurately segmenting the user-defined area.

46 3 AeroAssistant Core

Prompting

FP16
 Quantization

Figure 3.29. Network conversion Pipeline

3.8 Field Experiment
Within the context of the Aero-Train project, field experiments were conducted at
the DTU Risø Campus. The task was to develop a platform capable of reaching a
series of targets placed at various locations on the facility.

Figure 3.30. DTU Risø Campus Flying Area

The platform proposed to solve the challenge is depicted in Figure 3.31, an ex-
acopter equipped with a LattePanda Delta3 as the main computer. The sensors
mounted were a Realsense D455 [63] for proximity depth estimation and RGB de-
tection, and a Livox-Mid360 [103] used for reliably estimating odometry using Fast-
LIO [104]. The solution features an actuated arm capable of extending the contact
point by 20 cm.

To interact with the UAV, the AeroAssistant was used to identify the target and
position the UAV in front of it before making contact. Thus, the plugins reported in
Sec. 3.5.2 and Sec. 3.5.1 were connected and integrated with an autonomous target
detection mechanism, simplifying further interactions with the UAV as depicted in

3.8 Field Experiment 47

Figure 3.31. Drone Setup

Figure 3.32 while the autonomous sr changes and integration with the target detector
is reported in Figure 3.33.

Figure 3.32. Interaction scheme

In this scenario, the operator initializes the process by pressing the square but-
ton, triggering the status sr = Aiming_To_Target. During this phase, the operator
receives visual feedback of the detected target and the calculated path to reach it
(Figure 3.34(a)). Once satisfied with the detection and path, the operator presses
the square button again, changing the status to sr = Moving_To_Target, initiating
the autonomous movement towards the target. Upon reaching the first estimated
point, the status automatically changes to sr = Choose_Target and waits for a sat-
isfactory detection from the target detector. Once detected, the status changes to
sr = Following_Target, initializing the KCF over the target and extracting n consec-
utive target points Pext = {{pd1

, od1
}, ...{pdn

, odn
}}. These points are then averaged

in position and orientation to counteract potential noise from the target estimation.

pd =

∑n

1
pi

n
(3.17)

48 3 AeroAssistant Core

Free Flight

Aim_To_Target

Moving_To_Target

Target
Detector

Following_Target

Choose_Target

Confirm Detection

Figure 3.33. Autonomous detection and approach status changes pipeline

od =

∑n

1
oi

n
(3.18)

Finally, the average position pd and orientation od are sent to the UAV to correctly
position it in front of the target at the desired distance.

((a)) Aiming to the Point ((b)) Position Lock to a Point

Figure 3.34. Operator Interface while Flying

Once the UAV reaches the desired point, the arm can be triggered using the left
and right triggers to simplify the contact phase. Visualization of the extended arm
is shown in Figure 3.35(a) from an external perspective and in Figure 3.35(b) from
the operator’s POV. Additionally, as shown in Figure 3.35(b), the distance to the
closest point is displayed as text in the top-left corner of the interface, enhancing
distance perception. This feature, made possible by the VisualizationManager and
CloudManager, required minimal code adaptation to be displayed.

3.9 Bringing the Pilot into MR headsets 49

((a)) External POV of the contact with the ex-
tended arm ((b)) Operator POV of the contact with

the extended arm

Figure 3.35. Extended arm in contact from different points of view

3.9 Bringing the Pilot into MR headsets
UAV teleoperation often relies on visualizing camera and spatial information on flat
displays such as laptops, smartphones, or tablets. However, these displays suffer from
inherent limitations due to their dimensions, restricting the amount of data that
can be visualized. Additionally, outdoor operations can be hampered by sunlight
reflecting off the display, degrading the visualization experience. This issue is usually
mitigated either using a sun shield over the monitor, as shown in Figure 3.36(a)
or for better immersion, as discussed in Sec. 1.4 VR googles are also used. In this
case, commercial solutions like DJI Goggles2 [49] are often used, particularly with
FPV drones (Figure 3.36(b)), however, these solutions are tailored for specific drone
configurations and do not support the visualization of spatial data or other sources
of information beyond camera feedback.

((a)) UAV operator using a sun shield ((b)) UAV operator using FPV goggles

Figure 3.36. Operator Interface while Flying

Therefore, considering the objective of the AeroAssistant to enhance the UAV tele-
operation experience, and given the recent advancements in commercial MR headsets

50 3 AeroAssistant Core

like Meta Quest 3 [105] and Apple Vision Pro [106], using an MR pilot interface to
visualize information collected from the UAV appears to be a logical solution. This
approach resolves spatial limitations that are no longer restricted by physical device
dimensions and allows for the correct representation of spatial information, such as
point clouds, without being affected by sunlight.

To facilitate this, as an initial step before developing a full teleoperation interface,
we developed a communication layer that translates ROS1 [75] messages to ZMQ [77].
This layer is integrated with Unity3D [107] to ensure maximum interoperability across
different headsets, independent of a specific ROS version on the interface side. A
schematic representation of this communication layer is shown in Figure 3.37, which
is responsible for establishing communication with the robot and abstracting various
message types such as PointCloud, Text, and Camera, enabling easy integration with
applications built on Unity3D that can run as stand-alone apps on MR devices.

Figure 3.37. Schema passage from ROS to Unity

A mockup application was developed to test the bridge’s capabilities, demonstrat-
ing the ability to visualize images, point clouds, and interact with ROS by calling
services within the headset Figure 3.38. In this setting a laptop was used to stream
the image from the webcam while the pointcloud was generated as a series of points
over a sphere.

3.9 Bringing the Pilot into MR headsets 51

ROS to ZMQ conversion Unity App on the MR device

Camera PointCloud Services

Figure 3.38. Mockup Visualization App

52

CHAPTER4
Conclusion

This PhD research contributes to the field of assisted aerial teleoperation through
the introduction of AeroAssistant, an innovative teleoperation framework that com-
bines shared autonomy and augmented visualization to improve the teleoperation
experience. Throughout the research, the proposed framework was tested in various
environments, from controlled laboratories to full-scale mock-up industrial scenarios,
and was executed on diverse platforms, ranging from hexacopters with manipulators
to small, resource-constrained FPV-like drones. This experience highlighted the im-
portance of having a flexible yet efficient framework capable of running on almost
any modern computer. Through user studies, we validated parts of the framework,
providing valuable insights into what is important when piloting a UAV and the sig-
nificance of building a trust relationship between the operator and the UAV. These
insights are crucial for ensuring that the features we develop are truly beneficial to
the end user.

With the proposed work, the aim is to push the boundaries of human-drone interac-
tion, delivering a tool that opens up possibilities for performing advanced operations
and maneuvers without the need for expert pilots, while never compromising the feel-
ing of control over the platform. However, despite the advances achieved throughout
the PhD, numerous challenges still need to be addressed to enhance operations and
achieve interactions that closely resemble the concept of a UAV as a companion rather
than just a tool. In the subsequent section, the limitations of the system, along with
possible research directions, are further evaluated.

4.1 Future Directions
Maintaining the idea of an interaction paradigm reminiscent of classical teleoperation
mechanisms while incorporating advanced features, AeroAssistant has predominantly
focused on a one-to-one relationship with the UAV, wherein an operator directly
controls a single UAV with a RC controller trought a flat display such as monitor
or tablet. However there are different areas which deserve further investigation and
exploration, such as multi UAV control (Sec. 4.1.1), usage of immersive displays
(Sec. 4.1.2) for enhanced interaction, interfaces for assisted manipulation activities
(Sec. 4.1.3) and interaction trough natural language (Sec. 4.1.4).

54 Conclusion

4.1.1 Swarm Management
Depending on the nature of the operation, utilizing swarms of drones presents a
promising approach to expedite tasks by distributing workload across multiple drones.
Researchers have already begun exploring this direction by investigating the efficacy
of user-centric interfaces for human-swarm teaming [108], as well as exploring body
gesture control [109] and head-mounted displays for swarm tracking and relative local-
ization [110]. Nevertheless, these interactions suffer from a lack of familiar interaction
schemes and do not adequately address the need for seamless UAV control transition.
Therefore, further exploration of interactions within a paradigm akin to the one cur-
rently proposed but extended to a multi-robot scenario could prove both intriguing
and pertinent in facilitating swarm control while retaining the operator at the core
of the decision-making process.

4.1.2 Immersive Interfaces
As already stated in Sec. 3.9 current teleoperation visualization devices are predomi-
nantly confined to flat screens, such as tablets or computer interfaces. This limitation
is primarily due to their commercial availability, affordable prices, and portability.
However, these devices have screens with constrained dimensions, which restrict the
amount of information that can be effectively displayed. Additionally, they often
suffer from light reflection issues, which can hinder the user experience.

Given the recent advancements in commercial XR devices, such as Meta Quest 3 [105],
Apple Vision Pro [106], Pico 4 [111], Varjo XR4 [112], and HTC Vive Pro [113], there
is now an opportunity to develop teleoperation control interfaces that are not con-
strained by screen dimensions. These XR devices offer the potential to create a more
immersive camera streaming experience and provide better representation of spatial
data, thereby offering immediate feedback to the operator. Several studies, such
as [45–47], have already begun to explore the utilization of immersive devices for re-
mote teleoperation and manipulation tasks. Consequently, implementing immersive
displays for AeroAssistant appears to be a logical progression to further enhance and
streamline the teleoperation experience.

4.1.3 Assisted Manipulation
Another aspect to take in consideration for further research is about the recent ad-
vancements in UAV manipulation capabilities [114], as evidenced by UAVs capable
of tasks such as drilling [115], locking to pipes [116], and possessing full compliant
arms [117], it is logical to consider how these interactions could benefit from enhanced
interaction through shared autonomy paradigms. In such paradigms, the operator
sends high-level commands while the UAV maintains the operator informed through
an augmented interface, effectively acting as a supervisor throughout the operation.

4.1 Future Directions 55

Additionally, incorporating haptic feedback could significantly enhance the operator’s
ability to receive non-visible feedback during these operations.

4.1.4 Natural Language Interaction
One crucial aspect that could potentially drastically alter the interaction with UAVs
is through natural language. In recent years, with the discovery of the effectiveness of
Reinforcement Learning with Human Feedback [118] in controlling language models,
we have witnessed an explosion of Large Language Models (LLMs) [119,119–122] with
remarkable reasoning capabilities and the ability to answer even the most complex
questions. Paired with the most advanced speech recognition models [123], this de-
velopment could pave the way for a more natural interaction, as showcased in [124]
with ChatGPT. Within the framework of AeroAssistant, a very promising direction
to explore could lie in building a natural interaction scheme where the operator issues
high-level commands such as ”Take Off” or ”Go towards that Pipe,” and the UAV gen-
erates a plan [125,126] that could be displayed in an interface similar to [127] where
the operator can control, accept, and modify potential actions, thereby ensuring that
full control remains in the operator’s hands.

56

Appendices

APPENDIXA
Articles

The following is a list of published and submitted work along the studies.

Learn to efficiently exploit cost maps

by combining RRT⋆ with Reinforcement Learning

Riccardo Franceschini1,2, Matteo Fumagalli2 and Julian Cayero Becerra1

Abstract— Safe autonomous navigation of robots in complex
and cluttered environments is a crucial task and is still an open
challenge even in 2D environments. Being able to efficiently
minimize multiple constraints such as safety or battery drain
requires the ability to understand and leverage information
from different cost maps. Rapid-exploring random trees (RRT)
methods are often used in current path planning methods,
thanks to their efficiency in finding a quick path to the goal.
However, these approaches suffer from a slow convergence
towards an optimal solution, especially when the planner’s goal
has to consider other aspects like safety or battery consumption
besides simply achieving the goal. Therefore, we propose a
sample-efficient and cost-aware sampling RRT⋆ method that is
able to overcome previous methods by exploiting the informa-
tion gathered from map analysis. In particular, we leverage the
use of a Reinforcement Learning model able to guide the RRT⋆

sampling towards an almost optimal solution. We demonstrate
the performance of the proposed method against different RRT⋆

implementations on multiple synthetic environments.

I. INTRODUCTION

Robot path planning tries to solve the task of finding

an optimal path without collisions between two points in

an environment where the optimality is defined by a cost

function [5]. Multiple path planning algorithms has been

developed such as A⋆ [8] or APF [14] methods. However,

these methods either tend to be inefficient or, suffer from

local minima. For these reasons, the whole family of Rapid-

exploring Random Trees (RRT [16]) and its variants such

as RRT⋆ [13] and Informed RRT⋆ [7] have become very

popular in path planning due to their ability to quickly find

a path combined with asymptotic optimality.

Depending on the task, various aspects may need to be

considered when planning. For example, in an infrastructure

inspection scenario, avoiding risky or complex areas could

be crucial [19], similarly, it could be fundamental to plan ac-

cording to the forecasted human position in search and rescue

scenarios [9] or consider social aspects while navigating be-

tween humans [22]. In this regard, Lu et al. [20] showed the

importance and difficulty of effectively combining multiple

cost maps when planning. Thus, being able to efficiently

find a path and safely navigate to complex and socially

complex environments is still an open challenge even in

2D, and researchers in the literature have proposed multiple

approaches addressing different aspects such as [23] and [4]

1Eurecat, Centre Tecnològic de Catalunya, Robotics
and Automation Unit, Cerdanyola del Valles, Barcelona,
Spain. riccardo.franceschini@eurecat.org
julian.cayero@eurecat.org

2 Automation and Control group, Department of Electrical Engineering,
Danish Technical University, Elektrovej, Building 326, DK-2800 Kgs.
Lyngby Denmark mafum@elektro.dtu.dk

where they developed reinforcement learning agents capable

of producing risk-aware policies for navigating in complex

environments with dynamic obstacles such as humans. Still,

those methods are focused on navigation rather than plan-

ning, hence, they are not directly related to the problem we

are facing. Also relevant are [24, 2, 3], where the concept of

risk is introduced to avoid collision with humans. In this case,

the RRT planner estimates the probability of collision and

constrains the path to maintain socially accepted distances

from people. Huan et al. [10], proposed a Soft Actor Critic

model capable of generating paths based on a previously

defined maximum accepted risk. Also, in [18] and [28] the

authors proposed models capable of predicting a probability

distribution to guide RRT sampling from a data set of already

resolved maps. While Choi et al. [11] developed a sample

efficient RRT planner using Q-Learning for node selection

for a robotic arm planning scenario. However, the methods

described above do not directly consider the use of cost maps

in their formulation and therefore are not directly comparable

with our formulation. On the other hand, methods such as T-

RRT[12] and T-RRT⋆[6] encode cost maps in their sampling

strategy accepting or rejecting new nodes depending on

their cost, in particular T-RRT⋆[6] will be considered in the

evaluation phase.

We propose in this article a novel way of combining

reinforcement learning with RRT⋆ to efficiently leverage

information from cost maps. Our approach differs from other

methods because it learns how to combine multiple cost maps

by understanding where to sample without the need to pre-

generate optimal trajectories such as [18] and [28]. We are

also able to keep the RRT⋆ approach and not lose asymptotic

optimality such as [10].

The remaining of this paper is structured as follows. In

Sec.II, problem II-A, map generation II-B, baselines II-C and

RL-RRT⋆II-D are introduced. Then, in Sec.III our method is

evaluated against the baselines, also comparison of visual

paths and trees is proposed.

II. METHOD

A. Problem Setting

Following the definition of a path planning problem as in

[28], let χ ∈ R
n represent the state space of all possible robot

configurations. Let χfree and χ
obs represent the portions of

the state space that can be achieved and unreachable, respec-

tively, given the presence of obstacles or map boundaries. A

discrete path, composed by an ordered collection of states

ϕ = [x0, x1, x2, ..xk] is considered a solution of the path

planning problem if ∀i ∈ {0, 1, 2, ...k − 1} and ∀γ ∈ [0, 1]

(1− γ)xi + γxi+1 ∈ χ
free,

(1− γ)xk + γxgoal ∈ χ
free,

||xk − xgoal|| < r,

(1)

with r representing a preset threshold.

Path solutions are not unique in general, hence letting Φ
to represent all the possible solutions, i.e., all the possible

discrete paths ϕi subject to (1), a big portion of path planner

algorithms are designed to provide ϕ⋆ ∈ Φ, a viable path

that minimize a given cost function c(ϕ):

ϕ∗ = argmin
ϕ∈Φ

c(ϕ). (2)

In this work, we restrict the state space to R
2, and consider

two cost functions. The Jl defined as

Jl =
k−1
∑

i=0

||xi − xi+1|| (3)

is the path length, which give raise to the traditional RRT⋆

planner and the second one is Jc

Jc =
k−1
∑

i=0

p
∑

j=0

C

(

xi + jd
(xi+1 − xi)

∥(xi+1 − xi)∥

)

(4)

that is the accumulated cost of the path, d is the step size,

p = floor(∥(xi+1 − x(i))∥ /d) (5)

represents the amount of steps between adjacent nodes and

C(x) represents the cost of the state x computed as the

spatial average of the nearest obstacle distance for the given

position and its surroundings. Hence the two are combined

in

J(ϕ) = Jl + λJc (6)

where λ in Eq. 6 plays the role of a tuning factor enabling

a trade-off between the two presented costs.

B. Map Generation

Similarly to [18], we built a dataset of randomly generated

maps starting from 3 obstacles primitives respectively walls,

cages and single obstacles (Fig. 1). By combining the 3 ob-

(a) Wall (b) Cage (c) Forest

Fig. 1: Obstacle primitives

stacle primitives, 4000 random maps of dimension [100, 100]
were generated, equally distributed among the possible map

combination, as shown in Table I.

Among the generated maps 80% are used for the training

phase, while 20% remains for validation.

Obstacles
Environment

1 2 3 4 5 6

Vertical wall ✓ ✓

Horizontal wall ✓ ✓

Cage ✓

Forest ✓ ✓ ✓ ✓

TABLE I: Environment categorization

1) Distance Map: Given a map, for each point on the

map, the distance to the nearest obstacle is calculated using

a k-d tree. Then, the cost is defined as the obstacle distance

average over the n nearest point. In our case, a 3x3 spatial

filter [25] is used to efficiently find the mean.

C. Baselines

This subsection presents the algorithms that will be used

as baseline to asses the performance of the new approach

presented in Sec. II-D. As first baseline we implemented

RRT⋆ from [26] and used as non cost-aware baseline. Then

the distances similar to [17] are considered in the cost

function as in (6), defined from now on as RRT⋆-c. However,

RRT ⋆ randomly samples in the χ state space, doing so

uses many iterations to explore parts of the map that are not

useful for a low-cost solution. Thus bringing the approach,

to ineffective sampling and slow convergence to the optimal

path. Hence, the first approach developed was to modify the

node sampling distribution by treating the distances values

as distribution to guide the sampling like [1]. Thus, the

probability of retrieving a node xj ∈ χ is

P (xj) =
C(xj)

∑χ

i C(xi)
. (7)

From now on we will refer to this approach as

RRT⋆single bias. However, RRT⋆single bias does not take

in consideration the direction to the goal while sampling. To

address such problem, the goal distance map Fig. 2b and

distance map Fig. 2a are combined as shown in Fig. 2c and

used as probability distribution in the sampling process with

brighter points being more likely to sample. We will refer

to this approach as RRT⋆multiple bias. The probability

function is then defined as:

P (xj) =
C(xj) + ∥xj − xgoal∥

∑χ

i C(xi) + ∥xi − xgoal∥
(8)

Also T-RRT* [6] is implemented, here the authors propose

a transition function that through the usage of an adaptive

temperature T (in our case Tinit = 10−6 and Trate = 0.1)

accept or reject new nodes depending on the difference of

cost with respect to the node that are already in the three. For

all the methods listed that make use of λ, a value of λ = 100
has been chosen. This particular values has demonstrated to

give enough emphasis to the safety without over-unbalancing

the relationship between distance and safety in the cost

equation.

D. RL-RRT⋆

This section introduces the RL-RRT⋆ method and the

implementation of the collaborative framework that connects

the RL agent and the RRT⋆ algorithm.

(a) Distance (b) Goal (c) Goal + Distance

Fig. 2: Different sampling distributions

Initially, the sampling region is restricted to a square

around a selected node represented by the black square and

the green point in Fig. 4 (planner sampling area). The

action space of the RL agent is defined over the sampling

region as the four possible partitions of the original square

named as 0, 1, 2 and 3 areas and representing the direction

where to sampling next defined as agent sampling area.

Then, RRT⋆ samples n random nodes following (8). The

closest node to the center of the selected sampling area is

then selected as the reference node, the sampling area is up-

dated to its surroundings and the process is repeated until the

goal or the maximum iteration are reached. Algorithm. (1)

summarize the process and Fig. 3 draft the network and

connections.

1) Implementation details: To understand the environ-

ment and take decision the model receive n ∗ global map,

n ∗ local map and the state defined as state = [p, c, d, i].
Where global map is the complete map is enriched with

best node (green), start node (red) and goal node (blue)

as in Fig. 5. While local map is the visual representation of

the planner sampling area previously described (Fig. 4).

The number of cost maps is described by n (in our case n =
2, the distance map (Fig.2a) and the goal map (Fig.2b)).

Thus, both visual enriched representations are converted to

grayscale and resized to ensure efficient performance with-

out losing relevant information. Regarding the state vector,

p = (x, y) is the current best node position, c is the cost

over distance value from start node to best node, d is

the distance to the goal and i is current iter/max iter.

Maps are processed through two separate Visual Encoders

as presented in Fig. 3. These encoders are a combination

of two convolutional layers followed by linear layers. Both

local and global encoders have the same structure but they

differ in the size of the first convolutional kernels. The

global encoder has a larger kernel (5×5) for extracting global

features while the local encoder has a smaller kernel (3×3)

to focus more on local features. Subsequently, the extracted

characteristics are processed through linear layers which have

the task of distilling the information by reducing the dimen-

sionality before the concatenation with the other state values.

Then, the concatenated features are processed through the

fusion layer which consists on a combination of multiple

linear layers. The final output, are the action probabilities

used to create a categorical distribution from which the

action is sampled and passed to the environment. The agent

was trained using PPO [27] due to its data efficiency and

reliability, with actor and critic learning rate respectively

lr actor = 0.0003 and lr critic = 0.001, as optimizer

Adam [15] and loss MSE (Mean Square Error). Furthermore,

to maintain the asymptotic optimality of RRT⋆, we allow the

planner to explore regions outside agent sampling area by

not constraining an r% of the total amount of samples to the

agent action.

A dynamic r that depends on the iteration number has

been considered as

r(q) =











0, if q < aImax

α(q−aImax), if aImax ≤ q ≤ bImax

Th, otherwise

(9)

with 0 < a < b ≤ 1, Th representing the maximum

percentage of samples not in the agent sampling area,

Imax representing the maximum number of iterations and

α = Th(
1

(b−a)Imax
) a parameter selected to reach Th at

bImax. This choice allows the agent to fully control the sam-

pling for the first iterations and include potential solutions of

the RRT⋆multiple bias as the iterations increase. Learning

and validation results present in this paper are generated with

a = 0.5, b = 5/6, Th = 0.8 and Imax = [50...2000]
Since the goal is to reduce the cost of the path while being

efficient, we reward the agent only when a path is found

according to (10) where n iter is the number of iterations

needed to find a path.

reward =
Jl
Jc

+
1

n iter
(10)

Algorithm 1 Environment Step

1: procedure ENV.STEP(action)

2: % get the sampling area from the agent action

3: boundaries← env.get sampling bound(action)
4: % perform n step of RRT* within the boundaries

5: state, reward, done← env.plan n step(boundaries)

6: % return the information to the agent

7: return state, reward, done
8: end procedure

III. RESULTS

This section presents the comparison of RL-RTT⋆ against

the baseline planners presented in Sec. II-C. The methods are

evaluated over 800 randomly generated maps not present in

the training data set of our method with maximum possible

iterations ranging from 50 up to 2000 steps. Since the aim is

to show the effectiveness of our approach in effectively find

low-cost path. We have decided to let the baselines reach

the maximum iteration possible, this allows the baselines

to take full advantage of all possible iterations and find

the best path based on their approach. Contrary, our RL-

RRT⋆ approach stops as soon as it finds a solution and the

planner stops at the maximum iteration only if it doesn’t

find a solution. We decided to use this approach to further

demonstrate our method’s ability to effectively recover non-

complex pathways on the first try.

For each map, method and iteration, an average of the

success rate, path length, and the normalized cost over 3

C
o
n
v
2

D

5
x
5

C
o
n
v
2

D

L
in

e
a
r

L
in

e
a
r

R
e
L
U

R
e
L
U

R
e
L
U

3
x
3

[n,gd,gd]

[n,ld,ld]

Visual Encoder
C

o
n
v
2

D

3
x
3

C
o
n
v
2

D

L
in

e
a
r

L
in

e
a
r

R
e
L
U

R
e
L
U

R
e
L
U

3
x
3

Visual Encoder

L
in

e
a
r

S

t

a

t

e

T
a
n
h

L
in

e
a
r

L
in

e
a
r

T
a
n
h

Fusion Layer

S
o
fm

a
x

Concatenate

A
c
ti

o
n
s
 P

ro
b

Categorical Distribution

Action

RRT*
perform n steps

Define sampling area

EnvironmentAgent

Fig. 3: The RL-RRT⋆ architecture. The agent receive as input state of the planner plus global and local maps. Using this

information the agent drives the RRT⋆ multi bias sampling by providing one of the 4 directions, then n nodes are sampled

and the loop is repeated until a solution or the maximum iteration is reached.

Fig. 4: From global map to local map

Fig. 5: Distance Map [left] Goal Map [right] with start goal

and best nodes

separate tests, with different seeds in the random processes,

are run to mitigate the possible effect of edge cases. The

results provided are the success rate, defined as

Sr =
Nsuccess

Ntot

, (11)

Jc/Jl and Jl (Fig. 6). With Nsuccess and Ntot representing

the number of successful experiment and the total number

of experiments respectively.

The experiments where executed on a NVIDIA-GTX

1080ti with Python 3.8.8 and Pytorch [21] 1.10.2.

We want then evaluate the performance of our method

against the other approaches. Fig. 6 reports the performances

of the previously described baselines against RL-RRT⋆. As

can be seen in Fig. 6, the number of maximum iterations

plays an important role in performance. In particular, for a

low value of maximum possible iterations, our method and

the RRT with bias constantly struggle to find a solution even

if those they find are significantly lower in terms of path

cost (Fig. 6). We believe that these results are caused by the

0.6

0.8

S
r[
%
]

1.5

2.0

J
c/
J
l[−

]

50 100 200 300 500 1250 2000
Iteration Number [-]

70

80

90

J
l[u

2
]

RRT*

RRT*-c

RRT* single bias

RRT* multiple bias

T-RRT*

RL RRT*

Fig. 6: Perfomance Comparison

further difficulty introduced in restricting sampling to less

complex areas. This approach leads to limiting the set of

admissible solutions to less complex solutions but at the same

time reduces the set of all possible solutions by increasing

the number of iterations necessary to constantly find a path.

Hence, considering an higher number of iterations the RL-

RRT⋆ considerably outperforms both standard RRT⋆ and

RRT⋆ biased-sampling approaches in terms of Cost over

path length while maintaining a similar Success Rates and

distances that are in between to the ones found by the T-

RRT⋆ and the RRT⋆ biased-sampling. Numerical results over

the 2000 iterations test are reported in Table II that shows

how the agent is capable of redirecting the planner towards

non complex region without increasing too much the length

of the path as it happens in the sampling based approaches.

In addition, the average number of iterations required to find

the path is reported which shows the ability of RL-RRT⋆ to

quickly find a non-complex path.

To further evaluate the performance and the behaviour of

the different algorithms, we perform a case study on visual

Method Sr(%) Jl/Jd Jd Iter

RRT⋆ 95.50 1.97 83.72 2000
RRT⋆-c 95.50 1.96 83.68 2000
RRT⋆single bias 95.46 1.55 93.96 2000
RRT⋆multiple bias 95.50 1.55 95.46 2000
T-RRT⋆ 95.50 1.76 84.83 2000
RL-RRT⋆ 94.25 1.20 92.53 319

TABLE II: Performance over 2000 iterations

examples (Fig. 7) with a maximum iteration number of 500.

Comparing the tree evolution and final path generated by

RRT⋆-c, T-RRT⋆ and RL-RRT⋆ approaches.

From Fig. 7 the differences between the approaches are

worth to be further analyzed. In particular, it is interesting

to note the differences between the classic RRT⋆ (Fig. 7a

and Fig. 7b) and RL-RRT⋆ (Fig. 7e and Fig. 7f) paths and

trees. The former randomly samples around the map ending

up with a path that goes to the less safe narrow passage

while the RL agent is able to make long-term decisions by

guiding the tree’s development to the safe path. Likewise,

T-RRT⋆ approach also limits the tree expansion thanks to

the transition test, resulting in a sparse tree but with a safer

path (Fig. 7c) than the one produced by the standard RRT⋆,

however, is not as optimal as the RL-RRT⋆ path.

(a) RRT⋆ path (b) RRT⋆ tree

(c) T-RRT⋆ path (d) T-RRT⋆ tree

(e) RL-RRT⋆ path (f) RL-RRT⋆ tree

Fig. 7: Paths and Trees Comparison (500 Iterations)

IV. CONCLUSION

This work introduces a novel sample-efficient planner that

mixes a reinforcement learning agent and RRT⋆ solutions

to find viable paths when considering several costmaps.

The derived approach has been compared against different

baselines in multiple synthetically generated environments

considering path length and obstacle distance as objectives.

The results derived demonstrated that RL-RRT⋆ consistently

outperforms the other approaches in finding the less complex

path while maintaining good success rates and path length.

Future work will extend the presented concept to the 3D

case, targeting uncertain maps and considering noisy and

imperfect sensor data. Moreover, a generalization of the

current approach from 2 to n different costmaps will be

proposed.

ACKNOWLEDGMENT

This work has been supported by the European Unions

Horizon 2020 Research and Innovation Programme AERO-

TRAIN under the Grant Agreement No. 953454.

REFERENCES

[1] Bianca Bendris and Julián Cayero Becerra. “Design

and Experimental Evaluation of an Aerial Solution for

Visual Inspection of Tunnel-like Infrastructures”. In:

Remote Sensing 14.1 (2022). ISSN: 2072-4292. DOI:

10.3390/rs14010195.

[2] Wenzheng Chi and Max Q.-H. Meng. “Risk-RRT:

A robot motion planning algorithm for the human

robot coexisting environment”. In: 2017 18th Inter-

national Conference on Advanced Robotics (ICAR).

2017, pp. 583–588. DOI: 10.1109/ICAR.2017.

8023670.

[3] Wenzheng Chi, Jiankun Wang, and Max Qing-

Hu Meng. “Risk-Informed-RRT*: A Sampling-based

Human-friendly Motion Planning Algorithm for Mo-

bile Service Robots in Indoor Environments”. In: 2018

IEEE International Conference on Information and

Automation (ICIA). 2018 IEEE International Confer-

ence on Information and Automation (ICIA). Aug.

2018, pp. 1101–1106. DOI: 10.1109/ICInfA.

2018.8812396.

[4] Jinyoung Choi et al. “Risk-Conditioned Distributional

Soft Actor-Critic for Risk-Sensitive Navigation”. In:

CoRR abs/2104.03111 (2021). arXiv: 2104.03111.

URL: https://arxiv.org/abs/2104.03111.

[5] Howie Choset et al. Principles of robot motion: theory,

algorithms, and implementations. MIT press, 2005.

[6] Didier Devaurs, Thierry Siméon, and Juan Cortés.

“Optimal Path Planning in Complex Cost Spaces With

Sampling-Based Algorithms”. In: IEEE Transactions

on Automation Science and Engineering 13.2 (2016),

pp. 415–424. DOI: 10 . 1109 / TASE . 2015 .

2487881.

[7] Jonathan D. Gammell, Siddhartha S. Srinivasa, and

Timothy D. Barfoot. “Informed RRT*: Optimal In-

cremental Path Planning Focused through an Admis-

sible Ellipsoidal Heuristic”. In: CoRR abs/1404.2334

(2014). arXiv: 1404.2334. URL: http://arxiv.

org/abs/1404.2334.

[8] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A

formal basis for the heuristic determination of mini-

mum cost paths”. In: IEEE transactions on Systems

Science and Cybernetics 4.2 (1968), pp. 100–107.

[9] Larkin Heintzman et al. “Anticipatory Planning and

Dynamic Lost Person Models for Human-Robot

Search and Rescue”. In: 2021 IEEE International

Conference on Robotics and Automation (ICRA).

2021, pp. 8252–8258. DOI: 10.1109/ICRA48506.

2021.9562070.

[10] Xin Huang et al. “Risk Conditioned Neural Motion

Planning”. In: arXiv:2108.01851 [cs] (Aug. 4, 2021).

arXiv: 2108.01851. URL: http://arxiv.org/

abs/2108.01851 (visited on 01/18/2022).

[11] Jinwook Huh and Daniel D. Lee. “Efficient Sampling

With Q-Learning to Guide Rapidly Exploring Random

Trees”. In: IEEE Robotics and Automation Letters 3.4

(2018), pp. 3868–3875. DOI: 10.1109/LRA.2018.

2856927.

[12] Leonard Jaillet, Juan Cortes, and Thierry Simeon.

“Transition-based RRT for path planning in contin-

uous cost spaces”. In: 2008 IEEE/RSJ International

Conference on Intelligent Robots and Systems. 2008,

pp. 2145–2150. DOI: 10 . 1109 / IROS . 2008 .

4650993.

[13] Sertac Karaman and Emilio Frazzoli. “Sampling-based

Algorithms for Optimal Motion Planning”. In: CoRR

abs/1105.1186 (2011). arXiv: 1105 . 1186. URL:

http://arxiv.org/abs/1105.1186.

[14] Oussama Khatib. “Real-time obstacle avoidance for

manipulators and mobile robots”. In: Autonomous

robot vehicles. Springer, 1986, pp. 396–404.

[15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method

for Stochastic Optimization”. In: 3rd International

Conference on Learning Representations, ICLR 2015,

San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings. Ed. by Yoshua Bengio and Yann

LeCun. 2015. URL: http://arxiv.org/abs/

1412.6980.

[16] Steven M. LaValle. “Rapidly-exploring random trees :

a new tool for path planning”. In: The annual research

report (1998).

[17] Jinhan Lee, Charles Pippin, and Tucker Balch. “Cost

based planning with RRT in outdoor environments”.

In: 2008 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems. 2008, pp. 684–689. DOI:

10.1109/IROS.2008.4651052.

[18] Zhaoting Li, Jiankun Wang, and Max Q.-H. Meng.

“Efficient Heuristic Generation for Robot Path Plan-

ning with Recurrent Generative Model”. In: 2021

IEEE International Conference on Robotics and Au-

tomation (ICRA). 2021, pp. 7386–7392. DOI: 10 .

1109/ICRA48506.2021.9561472.

[19] Sara Ljungblad et al. “What Matters

in Professional Drone Pilots’ Practice?

Annbsp;Interviewnbsp;Studynbsp;to Understand

the Complexity of Their Work and Inform Human-

Drone Interaction Research”. In: Proceedings of

the 2021 CHI Conference on Human Factors

in Computing Systems. CHI ’21. Yokohama,

Japan: Association for Computing Machinery,

2021. ISBN: 9781450380966. URL: https :

//doi.org/10.1145/3411764.3445737.

[20] David V Lu, Dave Hershberger, and William D Smart.

“Layered costmaps for context-sensitive navigation”.

In: 2014 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems. IEEE. 2014, pp. 709–715.

[21] Adam Paszke et al. “PyTorch: An Imperative Style,

High-Performance Deep Learning Library”. In: Ad-

vances in Neural Information Processing Systems 32.

Ed. by H. Wallach et al. Curran Associates, Inc.,

2019, pp. 8024–8035. URL: http : / / papers .

neurips.cc/paper/9015- pytorch- an-

imperative - style - high - performance -

deep-learning-library.pdf.

[22] Claudia Pérez-D’Arpino et al. “Robot Navigation

in Constrained Pedestrian Environments using Re-

inforcement Learning”. In: CoRR abs/2010.08600

(2020). arXiv: 2010 . 08600. URL: https : / /

arxiv.org/abs/2010.08600.

[23] Claudia Pérez-D’Arpino et al. “Robot Navigation

in Constrained Pedestrian Environments using Re-

inforcement Learning”. In: 2021 IEEE International

Conference on Robotics and Automation (ICRA).

2021, pp. 1140–1146. DOI: 10.1109/ICRA48506.

2021.9560893.

[24] Jorge Rios-Martinez, Anne Spalanzani, and Christian

Laugier. “Understanding human interaction for prob-

abilistic autonomous navigation using Risk-RRT ap-

proach”. In: 2011 IEEE/RSJ International Conference

on Intelligent Robots and Systems. 2011, pp. 2014–

2019. DOI: 10.1109/IROS.2011.6094496.

[25] Ashley Walker Robert Fisher Simon Perkins and Erik

Wolfart. Mean Filter. https : / / homepages .

inf.ed.ac.uk/rbf/HIPR2/mean.htm. 2003.

[26] Atsushi Sakai et al. “PythonRobotics: a Python

code collection of robotics algorithms”. In: CoRR

abs/1808.10703 (2018). arXiv: 1808.10703. URL:

http://arxiv.org/abs/1808.10703.

[27] John Schulman et al. “Proximal Policy Optimization

Algorithms”. In: CoRR abs/1707.06347 (2017). arXiv:

1707.06347. URL: http://arxiv.org/abs/

1707.06347.

[28] Jiankun Wang et al. “Neural RRT*: Learning-Based

Optimal Path Planning”. In: IEEE Transactions on

Automation Science and Engineering 17.4 (2020),

pp. 1748–1758. DOI: 10 . 1109 / TASE . 2020 .

2976560.

Enhancing Human-Drone Interaction with Human-Meaningful Visual

Feedback and Shared-Control Strategies

Riccardo Franceschini1,2, Matteo Fumagalli2 and Julian Cayero Becerra1

Abstract— Recent developments in the capabilities of un-
manned aerial vehicles (UAVs) have made them suitable for use
in various industrial settings. Their ability to access difficult
and remote locations, as well as providing remote manipu-
lation and visual inspection capabilities, make them valuable
for various industrial applications. However, operating UAVs
can be challenging, particularly in cluttered environments.
This research aims to enhance the teleoperation experience
by providing human-meaningful information on the remote
user interface, thereby improving the operator’s situational
awareness. Shared autonomy routines utilizing the previously
collected information are also developed to further assist the
operator with challenging control tasks. The proposed system
has been tested in simulated environments and on actual
hardware.

I. INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have

steadily improved their ability to understand and move

through complex environments. In doing so, considering also

the emerging field of aerial manipulators [15], they have

opened up a wide range of possible applications ranging

from rescue operations [13, 1], visual inspection of civil in-

frastructure [3] to nondestructive testing (NDT) in industrial

facilities such as bridges or Oil&Gas facilities [16]. However,

these operations, in most cases, require an external operator

who is usually located away from the UAV and is responsible

for ensuring its safety. Therefore, maintaining a high level of

pilot situational awareness is essential to ensure the success

of the operation. Different approaches have been followed

in the literature, [17, 5, 2, 14] have explored the use of

the affordance primitives and visual cues to simplify remote

control of the manipulator. In [10], the authors created a

3D visualization that represents a third point of view of

the UAV interacting with the environment. While in [6, 7]

they explored the use of Human-Embodiment for different

manipulation activities. Also relevant is [11], in which an

augmented reality (AR) interface is proposed from a third

point of view to control an autonomous drone.

This work, similarly to [6, 9], proposes a human-drone

interaction framework and is based on two insights. The first

is that the operator currently receives only a portion of the

information that the UAV is collecting; in fact, the pilots’

interfaces are mainly based on the analog camera stream with

1Eurecat, Centre Tecnològic de Catalunya, Robotics
and Automation Unit, Cerdanyola del Vallès, Barcelona,
Spain. riccardo.franceschini@eurecat.org
julian.cayero@eurecat.org

2 Automation and Control group, Department of Electrical Engineering,
Danish Technical University, Elektrovej, Building 326, DK-2800 Kgs.
Lyngby Denmark mafum@elektro.dtu.dk

some additional information such as gps position, battery

status, ground elevation, or drone orientation, to name a

few. However, this does not allow for real-time perception of

what the drone is sensing, which is particularly important in

cluttered environments to improve operator self-awareness,

reducing the risk of dangerous maneuvers, and improving

inspection quality. The second insight is that in order to

retain full control over the UAV, the operator does not

need to completely control the drone, but rather, only the

decision-making regarding the drone’s actions is relevant.

To address the first insight, a flexible structure is proposed

for retrieving and combining pilot-relative information that

can be displayed on the remote control device. This system

adds a processing layer between the operator and the UAV

to encode information about distances to obstacles, UAV

odometry, orientation relative to surrounding surfaces, and

uncertainty of sensor measurements. This enables real-time

understanding of the UAV’s sensory data by the operator and

allows for the selection of relevant information tailored to

specific use cases. The second insight is addressed through

the development of shared autonomy algorithms to align and

follow the nearest surfaces. By doing so, the drone is respon-

sible for avoiding dangerous maneuvers and maintaining the

desired distance and attitude to the inspected surface, while

the operator retains full control over the UAV.

Overall, this interaction framework aims to improve opera-

tor self-awareness and enhance the UAV piloting experience.

The proposed method was evaluated in a simulated envi-

ronment with various maps, demonstrating its effectiveness

in maintaining the desired distance and orientation while

following a facing surface.

II. VISUAL FEEDBACK

In the following sections, the methodology used for ex-

tracting human-meaningful information from sensor data is

explained. It is assumed that the UAV is equipped with

sensors capable of perceiving the environment in 3D and

obtaining odometry data. First, the data preprocessing pro-

cedure is described, followed by an explanation of each of

the extracted pieces of information.

A. Information Preprocess

Initially, the 3D sensory data is depicted in the form of

point clouds. The augmented point cloud is characterized by

P = {xi|i = 1..N}, where each point xi ∈ R3 contains

supplementary information denoted by ki that is normalized

within the range of [0, 1]. As a first step in reducing noise

generated by the depth sensor, the received point cloud is

Preprocess Point
Cloud

Point Cloud

Odometry
Alignment
Information

Occupancy
Information

Sensor Specific
Information

Processing Layer

Operator UI

UAV

User
Input

Information to
Color-Scheme

Estimate Position

Fig. 1: This scheme represents the interaction between an operator and a UAV, where the operator uses a tablet to view

information extracted from the processing layer and control the UAV by sending high-level commands. A possible remote

control interface is shown in the bottom right corner. The upper left corner of the interface displays the video feedback from

the UAV, with points sensed on the surface colored according to the UAV’s alignment with the surface. The closest point,

which is used as a reference for calculating alignment movement, is represented by a larger dot (red in the image) and its

color indicates the angle difference with respect to the UAV’s alignment. Possible colors are red, yellow, and green. The

bottom left panel shows the 3D visualization of the UAV reference frame and the visualization of the colored point cloud

with the previously described information. The graphs in the center show the current angle to the surface and the distance to

the nearest point. On the right side of the panel, there are buttons for aligning the drone with the nearest surface, changing

the drone’s status to be aligned with the nearest surface, and moving while maintaining the correct attitude.

preprocessed through voxelization and removal of outliers

using statistical and geometric filter methods. The geometric

method discards points that have fewer than n points within

a sphere of radius r, while the statistical method discards

points that are further than a defined standard deviation σ
from the average of their n nearest neighbors.

B. Alignment Information

In order to ensure safe remote operation of a UAV, it is

essential to comprehend the UAV’s alignment with respect to

the surface it is facing, in addition to its current velocity and

acceleration. Obtaining this information involves estimating

the cloud normals of the surface using covariance analysis,

which is represented by ni = {xi, yi, zi} for all xi ∈ P.

However, the covariance analysis algorithm may produce

two opposite directions as normal candidates. To resolve this

issue, the normals are aligned towards the drone using the

camera origin as a reference point, resulting in consistently

oriented normals as shown in Fig. 2.

Knowing the camera frame with respect to the UAV body

frame, a direction vector d = [dx, dy, dz] in camera frame

can be defined representing the UAV orientation as in Fig. 3.

It is then possible to obtain ∀xi ∈ P the yaw γi offset by

simply:

γi = atan2(∥ni × d∥,ni · d) (1)

which due to the properties of atan2 and the ∥ni × d∥ that

is always positive returns angles that are γi ∈ [0, π]. The

attitude angle θi is another important angle that is taken into

consideration. Considering the UAV position p = [px, py, pz]
a vector ti representing the direction from the UAV center

to each xi, is defined ∀xi ∈ P as :

ti = [px − xi, py − yi, pz − zi] (2)

hence, the desired angle is:

θi = atan2(∥ti × ni∥, ti · ni) (3)

which like the yaw angle is θi ∈ [0, π]. Thus, the alignment

value normalized between ψi ∈ [0, 1] is:

ψi =
θi + γi
2π

(4)

A value of ψi = 1 indicates a safe alignment, while a value

of ψi = 0 indicates a non-safe alignment. It is important to

Fig. 2: Estimated normals of a pipe structure

Fig. 3: Representation of UAV reference frames and vectors

used to retrieve the alignment information

note that the alignment value does not distinguish between

positive and negative values to avoid ambiguity in the

displayed information. Additionally, the current angular and

linear velocity of the UAV should be considered, affecting

directly the alignment values. Therefore, angular Ω and

linear velocity V are extracted from the odometry and their

magnitude ∥V∥
2
, ∥Ω∥

2
is averaged over a time window of

n data points:

ω =

∑n

0
∥Ω∥

2

n
(5)

V =

∑n

0
∥V∥

2

n
(6)

to smooth the impact over the cloud visualization. Then, ψi

is scaled as follow:

ψi = ψ1+ω+V
i (7)

A visual example of the same surface with low and high

velocities is reported in Fig. 4.

C. Occupancy Information

In order to ensure the accuracy and reliability of remote

operations, it is essential to evaluate the confidence of the

UAV in regards to its sensor data. To address this concern,

(a) Low velocity (b) High velocity

Fig. 4: Alignment Information at different linear and angular

velocities

the use of HilbertMaps, as outlined in [18], can effectively

facilitate the understanding of spatial data and identify po-

tential outlier sensor readings. These maps utilize fast kernel

approximations to transform point cloud data into a Hilbert

space, where a logistic regression classifier is trained to

evaluate the confidence of the sensor data. The probability

of non-occupancy is defined as:

p(y∗ = −1|x∗,w) =
1

1 + exp(wTxi∗)
(8)

and respectively the occupancy probability is:

p(y∗ = +1|xi∗,w) = 1− p(y∗ = −1|xi∗,w) (9)

with xi∗ representing the sparse features obtained from the

RBF projection of the original points xi:

k(x,x
′

) = exp(−
1

2σ2
∥ x− x

′

∥22) (10)

and w the vector that parametrizes the discriminative model.

The advantage of this method lies in its ability to identify

whether sensor noise is causing inaccurate results by pro-

viding the ability to obtain the probability of occupancy for

each point, which can be easily interpreted by the operator

using it. A visual example of the occupancy cloud is shown in

Fig. 5, where the logistic regression can understand the noise

and spatial relationship of the sensor point cloud by returning

the occupancy probability, where dark colours indicate higher

occupancy probability and light colours lower probability.

(a) Sensed point cloud

1

0.5

0.2

0

0.1

0.4

0.3

0.7

0.6

0.9

0.8

(b) Occupancy point cloud

Fig. 5: On the left, the point cloud collected by the depth

camera; on the right, the estimated probability of occupancy.

D. Sensor specific information

Depending on the sensor used, other information can be

provided along with the point cloud. For example, the TOF

sensor developed by STMicroelectronics [12] retrieves the

confidence, amplitude and ambient light values for each

point. This information is usually discarded or used internally

during data processing. However, this information can play

an important role in increasing operator awareness and is

therefore reported as cloud information. For example, in

Fig. 6 the confidence is stable over the flat surface while it

drops near the corners, or the ambient values show a darker

pixel where the light changes.

(a) Original point cloud (b) Confidence point cloud

(c) Amplitude point cloud (d) Ambient point cloud

Fig. 6: Sensor Specific Information

III. SHARED AUTONOMY

This section propose the use of shared autonomy algo-

rithms to enhance the piloting experience by allowing the

operator to retain decision-making power while the move-

ment control is fully offloaded to the UAV. These routines

utilize previously collected data to understand and compute

the desired movement and orientation. One routine aligns

the UAV with the nearest surface, while the second routine

maintains a constant attitude and distance to the nearest

surface during lateral and vertical movements.

A. Align Routine

To align with the closest surface, the closest point xc is

obtained, where the distance is defined by the euclidean dis-

tance from the UAV. Similarly to the alignment information

previously retrieved (2), a vector tc that gives the direction

from the UAV center to xc is used to find angle difference

η:

η = atan2(∥d× tc∥,d · tc) (11)

the sign s of the angle difference is retrieved analyzing the

perpendicular component (y in the proposed frames in Fig.3)

from the vector cross product:

s = sign((d× tc)y) (12)

The new orientation is retrieved by updating the UAV yaw

φ:

φ = φ+ sη (13)

B. Surface Follow

To follow the closest surface, the operator set the UAV

to the surface following mode, from that moment the UAV

store internally the desired distance to maintain ξ. Then

the operator is still in control of the lateral and vertical

displacement with a controller like the one in Fig. 7. Thus,

Fig. 7: Example of Controller

the new desired position is computed as follows. Given

the command from the controller c = [lc, vc] with lc, vc
representing lateral and vertical displacement with values

+/−1 for positive or negative displacement and 0 for none.

The current position pt = [ptx, p
t
y, p

t
z] at time t is updated

as:

pt+1
y = pty + δlc (14)

pt+1
z = ptz + δvc (15)

with δ representing the desired offset. Then, given the new

position pt+1 a new closest point xc and its distance ξxc

is estimated using the current point cloud. The alignment

angle η and vector to touch t are retrieved. The angle will

be updated as in (13) to maintain the alignment, while the

position is updated to keep the desired distance.

pt+1
x = ptx + (ξxc

− ξ)tx (16)

The updated position p and orientation η is sent to the

position controller.

Moreover, the color of the dot Fig. 1 reflects the safety of

the contact following a familiar color scheme with green if

η < 5, yellow if between 5 ≤ η ≤ 15 and red otherwise.

IV. EXPERIMENT

In this section, the performance of the proposed shared-

autonomy algorithm is evaluated on synthetic maps using

RotorS [4] simulator in Gazebo [8] with realistic sensor

noise simulation. The goal of these experiments is to assess

the algorithm’s ability to maintain the correct alignment and

distance with respect to the facing surface under various map

conditions and δ values.

Different maps are used in the experiments, representing

different environments such as a vertical pipes and walls

from inside. The evaluation consisted of starting from the

same initial position and performing a loop around the

desired shape, measuring the offset with respect to the

desired distance of ξ = 1.5 meters and the angle with

the closest point xc. The values were then compared under

different δ values ranging from 0.1 meters to 0.5 meters. This

allows the evaluation of the algorithm’s performance under

a range of different conditions. Table I reports the average

distance offset τ = ∥ξxc
− ξ∥ and angle offset η for each

displacement δ across the tested environments.

δ[m] τ [m] η[deg]
0.1 0.037 13.52
0.2 0.071 15.40
0.3 0.072 15.31
0.4 0.089 14.75
0.5 0.071 14.41

TABLE I: Performance under different δ values

In figures 9, and 8, the trajectories with δ = 0.1 m and

δ = 0.5 m are shown. The color scheme encodes the distance

offset τ (Fig. 8b and 9b) and the angle offset η (Fig. 8a

and 9a). As expected, with a smaller displacement of δ =
0.1m, the angle estimation and position are more reliable,

producing smoother trajectories in which the UAV is more

aligned with respect to the surface. This behaviour is due

to the point cloud quality becoming worse as more distant

points from the current position are considered, leading

in this way to inaccurate attitude and position estimation.

Thus, the final trajectories are more fragmented, such as in

Fig. 8, where the UAV continuously adjusts its position and

orientation to match the desired values. Relevant to consider

is also the trajectory in Fig. 9 which shows that the drone

gets very close to the surface near the corners before realizing

that it should turn and continue in the other direction. This

behavior is a result of the map-less approach, which relies on

the current available information to compute the next point.

Until the distance sensor detects the other part of the wall, the

UAV will continue in the same direction, potentially resulting

in a crash if the δ is too high. Possible solutions to this

issue include using multiple depth cameras to provide a wider

field of view and detect lateral obstacles, or implementing a

safety mechanism that turns the drone to assess the safety of

the movement. However, this option may affect the piloting

experience as the drone continuously turns to analyze the

environment. Overall the proposed method demonstrated its

capability in maintaining the correct distance and attitude

with different δ values, though with a reduced precision at

higher δ values that may be tolerable depending on the task

requirements.

The effectiveness of the proposed approach was veri-

fied on actual drone hardware in a controlled laboratory

setting, as evidenced by Figure 1, successfully executing

the computations on readily available commercial hardware.

Nonetheless, when operating in real-world scenarios, the

transmission of information can cause a considerable delay

in the data visualization, which may negatively impact the

user experience.

V. CONCLUSION

To conclude, this work introduces a new method for

gathering, combining, and displaying multiple pieces of

relevant information on a pilot’s interface with the goal of

(a) η [deg]

(b) τ [m]

Fig. 8: Vertical Pipe, left δ = 0.1m, right δ = 0.5m

(a) η [deg]

(b) τ [m]

Fig. 9: Cube inside, left δ = 0.1m, right δ = 0.5m

improving situational awareness and reducing mental work-

load. In addition, the use of shared-autonomy schemes based

on information obtained from the point cloud is proposed.

The proposed method has been tested and validated in

simulated and real-world environments, showing the ability

to run on commercially available hardware. Future efforts

will concentrate on enhancing the visualization experience

with additional relevant information, implementing more

advanced shared autonomy algorithms for complex tasks and

reducing the visualization latency.

ACKNOWLEDGMENT

This work has been supported by the European Unions

Horizon 2020 Research and Innovation Programme AERO-

TRAIN under Grant Agreement No. 953454.

REFERENCES

[1] Ankit Agrawal et al. “The Next Generation of Human-

Drone Partnerships: Co-Designing an Emergency Re-

sponse System”. In: Proceedings of the 2020 CHI

Conference on Human Factors in Computing Sys-

tems. CHI ’20. Honolulu, HI, USA: Association

for Computing Machinery, 2020, pp. 1–13. ISBN:

9781450367080. DOI: 10 . 1145 / 3313831 .

3376825. URL: https://doi.org/10.1145/

3313831.3376825.

[2] Stephanie Arevalo Arboleda et al. “Assisting Manip-

ulation and Grasping in Robot Teleoperation with

Augmented Reality Visual Cues”. In: Proceedings

of the 2021 CHI Conference on Human Factors

in Computing Systems. CHI ’21. Yokohama, Japan:

Association for Computing Machinery, 2021. ISBN:

9781450380966. DOI: 10 . 1145 / 3411764 .

3445398. URL: https://doi.org/10.1145/

3411764.3445398.

[3] Bianca Bendris and Julián Cayero Becerra. “Design

and Experimental Evaluation of an Aerial Solution for

Visual Inspection of Tunnel-like Infrastructures”. In:

Remote Sensing 14.1 (2022). ISSN: 2072-4292. DOI:

10.3390/rs14010195. URL: https://www.

mdpi.com/2072-4292/14/1/195.

[4] Fadri Furrer et al. “Robot Operating System (ROS):

The Complete Reference (Volume 1)”. In: ed. by

Anis Koubaa. Cham: Springer International Publish-

ing, 2016. Chap. RotorS—A Modular Gazebo MAV

Simulator Framework, pp. 595–625. ISBN: 978-3-319-

26054-9. DOI: 10.1007/978-3-319-26054-

9_23. URL: http://dx.doi.org/10.1007/

978-3-319-26054-9_23.

[5] Stephen Hart et al. “Generalized Affordance Tem-

plates for Mobile Manipulation”. In: 2022 Inter-

national Conference on Robotics and Automation

(ICRA). 2022, pp. 6240–6246. DOI: 10 . 1109 /

ICRA46639.2022.9812082.

[6] Dongbin Kim and Paul Y. Oh. “Aerial Manipulation

using a Human-Embodied Drone Interface”. In: 2022

IEEE International Conference on Advanced Robotics

and Its Social Impacts (ARSO). 2022, pp. 1–7. DOI:

10.1109/ARSO54254.2022.9802972.

[7] Dongbin Kim and Paul Y. Oh. “Toward Avatar-Drone:

A Human-Embodied Drone for Aerial Manipulation”.

In: 2021 International Conference on Unmanned Air-

craft Systems (ICUAS). 2021, pp. 567–574. DOI: 10.

1109/ICUAS51884.2021.9476704.

[8] N. Koenig and A. Howard. “Design and use paradigms

for Gazebo, an open-source multi-robot simulator”.

In: 2004 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS) (IEEE Cat.

No.04CH37566). Vol. 3. 2004, 2149–2154 vol.3. DOI:

10.1109/IROS.2004.1389727.

[9] Konstantinos Konstantoudakis et al. “Drone Control in

AR: An Intuitive System for Single-Handed Gesture

Control, Drone Tracking, and Contextualized Camera

Feed Visualization in Augmented Reality”. In: Drones

6.2 (2022). ISSN: 2504-446X. DOI: 10 . 3390 /

drones6020043. URL: https://www.mdpi.

com/2504-446X/6/2/43.

[10] Jongseok Lee et al. “Visual-Inertial Telepresence for

Aerial Manipulation”. In: 2020 IEEE International

Conference on Robotics and Automation (ICRA).

2020, pp. 1222–1229. DOI: 10.1109/ICRA40945.

2020.9197394.

[11] Chuhao Liu and Shaojie Shen. “An Augmented Real-

ity Interaction Interface for Autonomous Drone”. In:

2020 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS). 2020, pp. 11419–

11424. DOI: 10 . 1109 / IROS45743 . 2020 .

9341037.

[12] MultiMedia LLC. ST Microelectronics. 2022. URL:

https://www.st.com/content/st_com/

en.html (visited on 09/15/2022).

[13] Antonio Loquercio et al. “Learning high-speed flight

in the wild”. In: Science Robotics 6.59 (2021),

eabg5810. DOI: 10 . 1126 / scirobotics .

abg5810. eprint: https : / / www . science .

org / doi / pdf / 10 . 1126 / scirobotics .

abg5810. URL: https://www.science.org/

doi/abs/10.1126/scirobotics.abg5810.

[14] Levi Manring et al. “Augmented reality for inter-

active robot control”. In: Special Topics in Struc-

tural Dynamics & Experimental Techniques, Volume

5. Springer, 2020, pp. 11–18.

[15] Anibal Ollero et al. “Past, Present, and Future of

Aerial Robotic Manipulators”. In: IEEE Transactions

on Robotics (2021). Conference Name: IEEE Trans-

actions on Robotics, pp. 1–20. ISSN: 1941-0468. DOI:

10.1109/TRO.2021.3084395.

[16] Anibal Ollero et al. “The AEROARMS Project: Aerial

Robots with Advanced Manipulation Capabilities for

Inspection and Maintenance”. In: IEEE Robotics Au-

tomation Magazine 25.4 (Dec. 2018). Conference

Name: IEEE Robotics Automation Magazine, pp. 12–

23. ISSN: 1558-223X. DOI: 10.1109/MRA.2018.

2852789.

[17] Adam Pettinger et al. “Reducing the Teleoperator’s

Cognitive Burden for Complex Contact Tasks Using

Affordance Primitives”. In: 2020 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems

(IROS). 2020, pp. 11513–11518. DOI: 10.1109/

IROS45743.2020.9341576.

[18] Fabio Ramos and Lionel Ott. “Hilbert maps: Scal-

able continuous occupancy mapping with stochastic

gradient descent”. In: The International Journal of

Robotics Research 35.14 (2016), pp. 1717–1730. DOI:

10.1177/0278364916684382. eprint: https:

//doi.org/10.1177/0278364916684382.

URL: https : / / doi . org / 10 . 1177 /

0278364916684382.

Riding the Rollercoaster: easying UAV Piloting Experience with XR and

continous planning

Riccardo Franceschini1,2, Matteo Fumagalli2 and Julian Cayero Becerra1

Abstract— Operating unmanned aerial vehicles (UAVs) in
complex environments can be challenging, particularly for
inexperienced operators. This paper introduces a method aimed
at enhancing the piloting experience by incorporating an
intermediary processing layer between the remote controller
and the drone. The proposed approach allows the operator to
control the UAV’s speed and direction along a safe path that is
dynamically computed and visualized on the camera stream in
an XR fashion. The UAV, autonomously plan and execute the
path, while adapting to the operator’s inputs and environmental
changes. The main objective of the proposed solution is to
improve the operator’s situational awareness and perception,
as well as the safety and efficiency of the UAV navigation. The
paper outlines the system and methodology employed, showing
its ability to operate at a high enough frequency to enable
seamless user interactions.

I. INTRODUCTION

Teleoperation remains a prevalent mode of human-robot

interaction for contemporary robotic systems, particularly

for unmanned aerial vehicles (UAVs). The collaboration

between the drones and the operators is crucial in ensuring

safety in tasks that require precise navigation in cluttered

and hazardous environments, as mentioned in [10, 1, 9].

However, teleoperating a drone in such scenarios can present

significant challenges for novice users, who may have limited

situational awareness and visual feedback when the UAVs

are far from them. To enhance the user experience, various

approaches have been proposed in the literature to enable

the operators and the UAVs to function as a team, sharing

information through extended reality (XR) interfaces and

shared control strategies. For example, researchers have

employed augmented reality and haptic feedback to improve

the operators’ perception in different aspects. Some have

shown the robot’s surroundings through immersive interfaces

with the UAVs moving in a superimposed 3D representation

of the environment [5, 13], while others have augmented

information regarding the actions they were taking while

remote piloting [3]. Additionally, some have mixed AR

cues with haptic feedback in robot manipulation tasks [4].

Furthermore, other approaches have allowed the operators to

modify parts of the drones’ trajectory using haptic devices

while leaving the UAVs to handle planning and execution

[8, 7, 12]. Deep learning agents have also been employed to

1Eurecat, Centre Tecnològic de Catalunya, Robotics
and Automation Unit, Cerdanyola del Vallès, Barcelona,
Spain. riccardo.franceschini@eurecat.org
julian.cayero@eurecat.org

2 Automation and Control group, Department of Electrical Engineering,
Danish Technical University, Elektrovej, Building 326, DK-2800 Kgs.
Lyngby Denmark mafum@elektro.dtu.dk

infer the user’s intentions from their inputs and use motion

primitives to control the drone, while displaying suggested

actions in augmented reality [15, 14]. This paper proposes

a novel approach to share the control between a UAV and

an operator. Instead of learning a trajectory or controlling

the shape of a path, the approach allows the drone to

compute a safe path. Meanwhile, the operator controls the

direction and speed of the UAV along the path with a SONY

DualSenseTM Wireless Controller [2], and the experience

is further enhanced with the usage of haptic feedback to

represent drone velocity. This interaction framework named

Rollercoaster, aims to improve the operator’s situational

awareness and facilitate the UAV piloting experience.

II. METHODOLOGY

This section explains the methodology used for planning

and sharing the control over the bilateral control execution.

The approach is sensor-agnostic; however, it assumes that the

UAV can estimate its odometry and perceive its surrounding

3D environment, whether through depth cameras or LiDAR.

First, the data planning and mapping procedure is described

(Sec. II-A), then an architecture for the integration of the

operator in the planning loop is proposed (Sec. II-B) and

finally the visualization technique is described (Sec. II-C).

A. Planning

The present section focuses on the planning aspect of the

framework. Given that there is human supervision throughout

the planning process, the proposed approach aims to conti-

nously plan in a finite and local space in a safe and efficent

way. Therefore, let us consider an initial point pi ∈ R
3

and a desired point pd ∈ R
3 placed at a constant distance

k from pi. A path can be defined as a sequence of N

points P = {pi,p0,p1, ...,pd} ∈ R
3 with a minimum

distance of lm from any obstacle. The method proposed in

[6] is implemented as the path planner due to its use of a

quadratic program (QP) with the Safe Flight Corridor (SFC)

concept. This enable real-time computation of dynamically

feasible and safe paths, ensuring the safety and efficiency

of the computed paths. It s worth noting that the planning

algorithm, was able to run at 100Hz, when executed on a

commercial machine equipped with an Intel i7 CPU. As

for the mapping aspect, we build upon the work of [11],

which introduces the concept of a sliding window approach

to mapping. This approach entails continuously updating a

local map using spatially sensed data. This method ensures

the availability of a reliable map of adequate scope for

navigation purposes, all while circumventing the issues of

Rollercoaster

Path

next point

Camera

path drawing

PathPlanner

next goal Odometry

MPC

EnvironmentPilot Interface

Fig. 1: The provided diagram depicts the interaction between the operator and the UAV. More specifically, the Rollercoaster

module receives the gain parameter rg and direction input rd from the operator. Simultaneously, it obtains odometry data,

camera feedback, and the computed path from the drone. The proposed layer determines the desired next goal by leveraging

both the operator’s direction input and the drone’s odometry information. Subsequently, a path planner generates a safe

trajectory towards the intended goal. Following this, utilizing the operator’s gain parameter, the desired point and velocity

are computed. These values are then communicated to the drone’s position controller for execution. Throughout this entire

process, the operator remains informed about the progress and trajectory through the overlayed path in the camera feedback,

ensuring continuous situational awareness.

drift and the computational demands associated with global

mapping methods.

B. Shared Control

To grant operators control over the drone’s path and veloc-

ity, ensuring obstacle avoidance and safe trajectory planning,

a user-friendly interface is provided using a joypad. The

operators interact with the joypad and convey two essential

inputs to the rollercoaster module: the rollercoaster gain,

denoted as rg ∈ [0, 1], and the desired direction, represented

as rd ∈ [−1, 1]. The rollercoaster gain rg control the desired

velocity along the path and is used to compute the velocity

command as follows. To begin, the path P from pi and p0

is discretized into n equally spaced points, and the first point

pn ∈ P is retrieved:

pnx
= pix +

p0x − pix
n

(1a)

pny
= piy +

p0y − piy

n
(1b)

pnz
= piz +

p0z − piz
n

(1c)

Next, a normalized direction vector d is obtained by calculat-

ing the direction from the current position pi to the desired

next point pn:

d =
pn − pi

∥pn − pi∥
(2)

Then, d is combined with rg and the maximum drone

linear velocity vmax = {vx, vy, vz} to compute the desired

velocity vn:

vnx
= dxrgvx (3a)

vny
= dyrgvy (3b)

vnz
= dzrgvz (3c)

The desired orientation γn needs to point at the desired

point pn to guarantee a smooth navigation experience, thus

is defined as:

γn = atan2(piy − pny
,pix − pnx

) (4)

Finally, the UAV controller receives as position, orienta-

tion and velocity, the values pn, γn, and velocity vn. Then,

to control the next desired point pd the desired direction rd
is used to determine the yaw offset τ :

τ = arccos(rd)−
π

2
(5)

which is used with current position pi, fixed distance k,

current orientation γ and angle offset τ , to retrieve the

desired point pd:

pdx
= pix + k cos(γ + τ) (6a)

pdy
= piy + k sin(γ + τ) (6b)

pdz
= piz (6c)

Algorithm 10 shows the pseudocode for the rollercoaster

algorithm.

Algorithm 1 Rollercoaster

1: function RC(planner, user input, drone)

2: n← 20 ▷ Discretize the path into n points

3: while drone.status is in ROLLERCOASTER do

4: pi ← drone.pose

5: pd ← point ahead(pi, d, user.rd)

6: path← planner.plan(pd)

7: pn ← next point(path, n, user.rg)

8: drone.move to(pn)

9: end while

10: end function

C. Visual Feedback

Maintaining the pilot’s involvement and awareness

throughout the flight operation is critical. This necessitates

the sharing of information and processes occurring within the

UAVs with the pilot. To accomplish this, the path obtained

through the method outlined in Sec. II-A is consistently

overlaid onto the camera stream, offering the operator an

immediate view of both the retrieved path, as illustrated in

Fig. 4. The camera’s field of view is constrained, as indicated

Fig. 2: Drone Frames

in Fig. 2, resulting in not all points having representation

within the camera plane. Consequently, alongside the camera

feed, a 3D perspective, akin to that depicted in Fig. 3, is

concurrently presented to the pilot. This 3D view enables

the pilot to gain insight into what the drone perceives and its

spatial relationship with surrounding obstacles. Furthermore,

considering the operator’s control over rd, as elucidated in

the preceding section, the desired points pd and pn are

illustrated as purple and green arrows, respectively. This

visual representation provides the pilot with information

about the drone’s heading and current orientation. Lastly,

the operator’s control gain rg is depicted as a green line

superimposed over the path, as exemplified in Fig. 4. The

length of this line corresponds to the gain value, with

complete overlap when rg = 1 and no line representation

when rg = 0. These visual elements collectively empower

the pilot to gain insights into the drone’s perception and

comprehend how the interaction with the UAV influences

its behavior. Consequently, this contribute to enhances the

operator’s overall situational awareness, ultimately resulting

in a more enjoyable and secure navigation experience.

Fig. 3: 3D environment visualization

(a) rg = 0

(b) rg = 0.5

(c) rg = 1

Fig. 4: Visualization of rg represented as green line over the

retrieved path

D. Remote Control

An important aspect of an effective HRI relies on the

choice of device used for such interaction. In this case, the

proposed approach integrates a PS5 controller due to its

commercial availability and the presence of adaptive triggers.

As depicted in Figure 5, the operator assumes control over

the rollercoaster module, utilizing the left adaptive trigger to

initiate movement and regulate the parameter rg , while the

right thumbstick is employed for adjusting rd. To enhance

the user experience and provide meaningful feedback, the

force exerted on the adaptive trigger, denoted as ft, is

dynamically adjusted based on the value of rg . Specifically,

the relationship is defined as follows:

ft = min((255 · rg) · λ, 255) (7)

This equation ensures that the adaptive trigger force,

represented on a scale of 0 to 255, is scaled proportionally

with rg and then further amplified by a factor of λ = 1.2
manually chosen. Doing so, the operator receives a stronger

feedback response at lower velocities.

Fig. 5: Remote control interaction

III. CONCLUSION

In conclusion, the Rollercoaster framework presents an

innovative approach to enhance the human-robot interaction

(HRI) in teleoperating unmanned aerial vehicles. The oper-

ator actively participates in the planning process and retains

control over the UAV’s velocity using the rg parameter and

direction with rd. This collaborative approach empowers the

operator to guide the drone’s movement along the intended

path, while the drone autonomously ensures safety and

interprets spatial data. By incorporating extended reality

(XR) elements such as the overlayed trajectory and haptic

feedback through the adaptive triggers of the PS5 controller,

this framework improves the operator’s situational awareness

while reducing the mental effort required for drone piloting.

Moving forward, there will be a focus on user validation

to better assess the effectiveness of the approach. Subse-

quent research efforts will prioritize the exploration of real-

world applications and the advancement of the integration

of emerging technologies, including immersive displays and

haptic devices, to further enhance HRI experiences.

ACKNOWLEDGMENT

This work has been supported by the European Unions

Horizon 2020 Research and Innovation Programme AERO-

TRAIN under Grant Agreement No. 953454.

REFERENCES

[1] Jacopo Aleotti et al. “Detection of Nuclear Sources by

UAV Teleoperation Using a Visuo-Haptic Augmented

Reality Interface”. In: Sensors 17.10 (2017). ISSN:

1424-8220. DOI: 10 . 3390 / s17102234. URL:

https://www.mdpi.com/1424-8220/17/

10/2234.

[2] Sony Interactive Entertainment. DualSense Wireless

Controller. https : / / www . playstation .

com / en - us / accessories / dualsense -

wireless-controller/. 2021.

[3] Riccardo Franceschini, Matteo Fumagalli, and Ju-

lian Cayero Becerra. “Enhancing Human-Drone In-

teraction with Human-Meaningful Visual Feedback

and Shared-Control Strategies”. In: 2023 Interna-

tional Conference on Unmanned Aircraft Systems

(ICUAS). 2023, pp. 1162–1167. DOI: 10 . 1109 /

ICUAS57906.2023.10156190.

[4] Tsung-Chi Lin, Achyuthan Unni Krishnan, and Zhi

Li. “Comparison of Haptic and Augmented Reality

Visual Cues for Assisting Tele- manipulation”. In:

2022 International Conference on Robotics and Au-

tomation (ICRA). 2022, pp. 9309–9316. DOI: 10 .

1109/ICRA46639.2022.9811669.

[5] Chuhao Liu and Shaojie Shen. “An Augmented Real-

ity Interaction Interface for Autonomous Drone”. In:

2020 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS). 2020, pp. 11419–

11424. DOI: 10 . 1109 / IROS45743 . 2020 .

9341037.

[6] Sikang Liu et al. “Planning Dynamically Feasible Tra-

jectories for Quadrotors Using Safe Flight Corridors in

3-D Complex Environments”. In: IEEE Robotics and

Automation Letters 2.3 (2017), pp. 1688–1695. DOI:

10.1109/LRA.2017.2663526.

[7] Dylan P. Losey and Marcia K. O’Malley. “Trajec-

tory Deformations From Physical Human–Robot In-

teraction”. In: IEEE Transactions on Robotics 34.1

(2018), pp. 126–138. DOI: 10.1109/TRO.2017.

2765335.

[8] Carlo Masone et al. “Semi-autonomous trajectory gen-

eration for mobile robots with integral haptic shared

control”. In: 2014 IEEE International Conference on

Robotics and Automation (ICRA). 2014, pp. 6468–

6475. DOI: 10.1109/ICRA.2014.6907814.

[9] F.J. Perez-Grau et al. “Semi-autonomous teleoperation

of UAVs in search and rescue scenarios”. In: 2017

International Conference on Unmanned Aircraft Sys-

tems (ICUAS). 2017, pp. 1066–1074. DOI: 10.1109/

ICUAS.2017.7991349.

[10] P. Ramon-Soria et al. “Planning System for Integrated

Autonomous Infrastructure Inspection using UAVs”.

In: 2019 International Conference on Unmanned Air-

craft Systems (ICUAS). 2019, pp. 313–320. DOI: 10.

1109/ICUAS.2019.8797874.

[11] Jesus Tordesillas et al. “Real-Time Planning with

Multi-Fidelity Models for Agile Flights in Unknown

Environments”. In: 2019 International Conference on

Robotics and Automation (ICRA). 2019, pp. 725–731.

DOI: 10.1109/ICRA.2019.8794248.

[12] Karl D. von Ellenrieder et al. “Shared human–robot

path following control of an unmanned ground

vehicle”. In: Mechatronics 83 (2022), p. 102750.

ISSN: 0957-4158. DOI: https : / / doi .

org / 10 . 1016 / j . mechatronics .

2022 . 102750. URL: https : / / www .

sciencedirect . com / science / article /

pii/S0957415822000083.

[13] Michael E. Walker, Hooman Hedayati, and Daniel

Szafir. “Robot Teleoperation with Augmented Reality

Virtual Surrogates”. In: 2019 14th ACM/IEEE Interna-

tional Conference on Human-Robot Interaction (HRI).

2019, pp. 202–210. DOI: 10.1109/HRI.2019.

8673306.

[14] Mohammad Kassem Zein et al. “Deep Learning and

Mixed Reality to Autocomplete Teleoperation”. In:

2021 IEEE International Conference on Robotics and

Automation (ICRA). 2021, pp. 4523–4529. DOI: 10.

1109/ICRA48506.2021.9560887.

[15] Mohammad Kassem Zein et al. “Enhanced Teleop-

eration Using Autocomplete”. In: 2020 IEEE In-

ternational Conference on Robotics and Automation

(ICRA). 2020, pp. 9178–9184. DOI: 10 . 1109 /

ICRA40945.2020.9197140.

Riding the Rollercoaster: Improving UAV Piloting Skills with

Augmented Visualization and Collaborative Planning

Riccardo Franceschini1,2, Javier Rodriguez Marquez1, Matteo Fumagalli2 and Julian Cayero Becerra1

Abstract— Operating unmanned aerial vehicles (UAVs) in
complex environments can be challenging, particularly for
inexperienced operators. This paper introduces a method aimed
at enhancing the piloting experience by incorporating an
intermediary processing layer between the remote controller
and the drone. The presented approach empowers operators to
control both the speed and direction of the UAV along a secure
path, which is continuously computed and overlaid onto the
operator’s camera stream. The UAV autonomously plans and
executes this path, adapting to the operator’s commands and en-
vironmental changes. The primary aim of this proposed solution
is to enhance the operator’s situational awareness, perception,
as well as the safety and efficiency of UAV navigation. The paper
outlines the system and methodology employed, showing its
ability to operate at a high enough frequency to enable seamless
user interactions. Furthermore, to validate the effectiveness of
this approach, a real-world test and a user-based experimental
study conducted in a simulation environment with an audience
comprising varying levels of pilot expertise have been carried
out.

I. INTRODUCTION

Teleoperation remains a predominant mode of human-

robot interaction in contemporary robotic systems, notably

for unmanned aerial vehicles (UAVs). Collaborative efforts

between drones and operators are essential for ensuring

safety in tasks demanding precise navigation within cluttered

and hazardous environments, as highlighted in [1, 19]. Man-

ual teleoperation currently serves as the de facto standard.

However, navigating a drone in such scenarios poses sig-

nificant challenges for pilots, particularly novice users, who

may experience restricted situational awareness and limited

visual feedback when the UAVs are at a distance. To enhance

user experience, the literature has proposed various meth-

ods to promote collaboration between operators and robots,

achieved through extended reality (XR) interfaces and shared

control strategies [21], which are further elaborated in Sec.II.

This work propose a system that aims to combine augmented

user interfaces and shared control strategies to address the

challenge of safe and effective navigation. The system relies

on an efficient path planning pipeline that continuously

computes safe routes for the drone, while the operator is

responsible for defining the UAV’s direction and speed along

these routes. Supported by the findings of [2], which demon-

strated the effectiveness of augmented visualization in user

1Eurecat, Centre Tecnològic de Catalunya, Robotics and
Automation Unit, Cerdanyola del Vallès, Barcelona, Spain.
[riccardo.franceschini, julian.cayero,
javier.rodriguez]@eurecat.org

2 Automation and Control group, Department of Electrical Engineering,
Danish Technical University, Elektrovej, Building 326, DK-2800 Kgs.
Lyngby Denmark mafum@elektro.dtu.dk

acceptance, the interaction is facilitated through an enhanced

visualization pipeline that displays relevant information on

the user interface. The operator uses a SONY DualSenseTM

Wireless Controller [5] to specify the direction and velocity

of the UAV. The controller also provides haptic feedback to

the operator, giving continuous feedback to the user. This

interaction framework, called Rollercoaster, aims to increase

the operator’s situational awareness and facilitate the UAV

piloting experience. Hence, the objective of this study is

to demonstrate the interaction between the operator and the

UAV and to substantiate its effectiveness. Experiments were

conducted in a simulated environment where crashes were

possible, involving pilots with varying levels of expertise,

to validate the efficacy of the interaction. These experi-

ments had the objective of evaluating their performance

and gathering user subjective feedback while they navigated

through a randomly generated map, both with and without

the proposed system’s implementation. The paper’s structure

is as follows: At first a literature overview of is proposed in

Sec.II, then in Sec.III, the processing layer of the proposed

system is outlined, addressing the collaborative path planning

procedure and augmented visualization. Subsequently, in

Sec.IV, an analysis of the collected data is presented and

an evaluation over a real world experiment is conducted

in Sec.V . Finally, in Sec.VI, the conclusion and future

directions of the research are outlined.

II. RELATED WORK

The landscape of human-robot interaction, particularly in

teleoperation scenarios, has witnessed diverse approaches to

enhance user experience and system performance. Existing

works have explored various strategies, encompassing ex-

tended reality (XR) interfaces, shared control mechanisms,

haptic feedback, deep learning integration, path planning, and

collision avoidance. Specifically, regarding drone control,

different approaches have been attempted, falling into macro

categories.

Assisted Pilot Interfaces: The first category involves the

development of systems such as [18, 17], where the operator

controls the UAV velocity in a manner similar to normal

teleoperation. A collision avoidance algorithm is deployed

between the operator and UAV to adjust the operator’s

commands when they pose a collision risk.

Augmented Reality Interfaces for Point and Move:

Works from [10, 24] showcase interfaces for controlling al-

most fully autonomous drones. These approaches require the

use of head-mounted displays (HMD), and their interaction

revolves around visualizing 3D data collected by the drone or

visualizing the drone’s trajectory superimposed on a physical

drone in front of the operator. The primary interaction here

is centered on defining a point and controlling the UAV

movement with the proposed interfaces.

Haptic Control for Trajectory Manipulation: Other

approaches, such as [3, 13, 12, 23, 14], revolve around the

use of haptic devices for trajectory modification, enhancing

the control experience by proposing different haptic feedback

schemes to the user. These methods aim to include the

operator in the UAV control pipeline, allowing the operator

to perform vertical and lateral displacement over a predefined

trajectory, providing haptic feedback based on the feasibility

of the movement from an obstacle and platform perspective.

Deep Learning Teleoperation: Other compelling tele-

operation approaches are proposed by [27, 26], where the

authors suggest learning common trajectories, such as turns,

straight lines, or circle trajectory shapes, using a deep learn-

ing agent that reads the operator’s control input. The agent is

then deployed between the operator and the UAV and takes

control when it detects that the operator is attempting one of

those trajectories, executing a precise movement.

Gaze Control Navigation: Interesting interaction ap-

proaches are also proposed by [25, 6], where the operator’s

gaze is detected through an HMD and used either to under-

stand the operator’s intention, correct the UAV trajectory, or

define a point where the UAV should move.

Rollercoaster: Our approach introduces a navigation in-

teraction akin to classical teleoperation schemes discussed

in the Deep Learning and Assisted pilot methods, aiming to

maintain a familiar interaction scheme easily integrable with

manual pilot teleoperation. However, instead of depending

on collision avoidance systems or deep learning agents, we

deploy a fast planner between the operator and the UAV.

This planner continuously seeks collision-free paths, and its

activation or deactivation is simplified with the press of a

button, granting complete control to the operator. This setup

is complemented by an immersive interface displaying the

retrieved plan and additional information in real-time on the

remote display.

III. METHODOLOGY

This section explains the methodology employed for plan-

ning and distributing control in the bilateral control execu-

tion. The approach is sensor-agnostic, but it presupposes that

the UAV has the capability to estimate its odometry and

perceive its surrounding 3D environment, whether through

depth cameras or LiDAR. Initially, this section outlines the

data planning and mapping process (Sec. III-A). Following

that, it introduces an architecture designed for the integration

of the operator into the planning loop (Sec. III-B). Lastly, the

visualization technique is detailed (Sec. III-C).

A. Planning

The present section focuses on the planning aspect of the

framework. Given that there is human supervision throughout

the planning process, the proposed approach aims to conti-

nously plan in a finite and local space in a safe and efficent

way. Therefore, let us consider an initial point pi ∈ R
3 and

a desired point pd ∈ R
3 placed at a constant distance k

from pi. A path can be defined as a sequence of N points

P = {pi,p0,p1, ...,pd} with a minimum distance of lm
from any obstacle. The method introduced in [11] has been

implemented as the path planner due to its utilization of a

quadratic program (QP) featuring the Safe Flight Corridor

(SFC) concept. The SFC consists of a collection of convex,

overlapping polyhedra that models the available free space

and establishes a continuous path from the robot’s current

position to the goal destination. Through the SFC, a set

of linear inequality constraints is introduced into the QP,

allowing for real-time motion planning. This capability en-

ables the real-time computation of dynamically feasible and

secure pathways, thus ensuring both safety and efficiency in

path calculation. Notably, the planning algorithm was able

to achieve a running frequency of 100Hz when executed

on a commercial machine equipped with an Intel i7 CPU.

Regarding the mapping aspect, the methodology builds upon

the research presented in [22]. This work introduces the con-

cept of a sliding window approach to mapping, characterized

by the continuous updating of a local map using spatially

sensed data. This technique guarantees the availability of

a dependable map with sufficient coverage for navigation

requirements, while simultaneously mitigating the challenges

related to drift and the computational resources demanded by

global mapping methods.

B. Shared Control

To grant operators control over the drone’s path and veloc-

ity, ensuring obstacle avoidance and safe trajectory planning,

a user-friendly interface is provided using a joypad. The

operators interact with the joypad and convey two essential

inputs to the Rollercoaster module: the rollercoaster gain,

denoted as rg ∈ [0, 1], and the desired direction, represented

as rd ∈ [−1, 1]. The rollercoaster gain rg control the desired

velocity along the path and is used to compute the velocity

command as follows. To begin, the path P from pi to p0 is

discretized into n equally spaced points, and the first point

pn ∈ P is retrieved:

pn = pi +
p0 − pi

n
(1)

Next, a normalized direction vector d is obtained by

calculating the direction from the current position pi to the

desired next point pn:

d =
pn − pi

∥pn − pi∥
(2)

Then, d is combined with rg and the maximum drone

linear velocity vmax = {vx, vy, vz} to compute the desired

velocity vn:

vnx
= dxrgvx (3a)

vny
= dyrgvy (3b)

vnz
= dzrgvz (3c)

Fig. 1: Diagram depicting the interaction between the operator and the UAV. More specifically, the Rollercoaster module

receives the gain parameter rg and direction input rd from the operator. Simultaneously, it obtains odometry data, camera

feedback, and the computed path from the drone. The proposed layer determines the desired next goal by leveraging both

the operator’s direction input and the drone’s odometry information. Subsequently, a path planner generates a safe trajectory

towards the intended goal. Following this, utilizing the operator’s gain parameter, the desired point and velocity are computed.

These values are then communicated to the drone’s inner controller for execution. Throughout this entire process, the operator

remains informed about the progress and trajectory through the overlayed path in the camera feedback, ensuring continuous

situational awareness

The desired orientation γn needs to point at the desired

point pn to guarantee a smooth navigation experience, thus

is defined as:

γn = atan2(piy − pny
,pix − pnx

) (4)

Finally, the UAV controller receives as position, orienta-

tion and velocity, the values pn, γn, and velocity vn. Then,

to control the next desired point pd the desired direction rd
is used to determine the yaw offset τ :

τ = arccos(rd) (5)

which is used with current position pi, fixed distance k,

current orientation γ and angle offset τ , to retrieve a new

desired point pd:

pdx
= pix + k cos(γ + τ) (6a)

pdy
= piy + k sin(γ + τ) (6b)

pdz
= piz (6c)

To point out is that the path is discretized, and only the initial

position is sent to the controller, along with the velocity.

This approach minimizes discrepancies in UAV movement,

which is crucial given the high-frequency repetition of this

process. Larger displacements have the potential to impact

the behavior of the position controller. Algorithm 10 shows

the pseudocode for the rollercoaster algorithm.

C. Visual Feedback

Maintaining the pilot’s involvement and awareness

throughout the flight operation is critical. This necessitates

the sharing of information and processes occurring within the

Algorithm 1 Rollercoaster

1: function RC(planner, user input, drone)

2: n← 20 ▷ Discretize the path into n points

3: while drone.status is in ROLLERCOASTER do

4: pi ← drone.pose

5: pd ← point ahead(pi,d, user.rd)

6: path← planner.plan(pd)

7: pn ← next point(path, n, user.rg)

8: drone.move to(pn)

9: end while

10: end function

UAVs with the pilot. To accomplish this, the path obtained

through the method outlined in Sec. III-A is consistently

overlaid onto the camera stream, offering the operator an

immediate view of the retrieved path, as illustrated in Fig-

ure 4. The camera’s field of view is constrained, as indicated

Fig. 2: Representation of drones frames, retrieved path and

camera FOV (Field of View)

in Figure 2, resulting in not all points having representation

within the camera plane. Consequently, alongside the camera

feed, a 3D perspective, akin to that depicted in Figure 3, is

concurrently presented to the pilot. This 3D view enables the

pilot to gain insight into what the drone perceives and its

spatial relationship with surrounding obstacles. Furthermore,

considering the operator’s control over rd, as elucidated in

the preceding section, the desired points pd and pn are

illustrated as purple and green arrows, respectively. This

visual representation provides the pilot with information

about the drone’s heading and current orientation. Lastly,

the operator’s control gain rg is depicted as a green line

superimposed over the path, as exemplified in Figure 4.

The length of this line corresponds to the gain value, with

complete overlap when rg = 1 and no line representation

when rg = 0. These visual elements collectively empower

the pilot to gain insights into the drone’s perception and

comprehend how the interaction with the UAV influences

its behavior. Consequently, this contributes to enhance the

operator’s overall situational awareness, ultimately resulting

in a more enjoyable and secure navigation experience.

Fig. 3: 3D environment visualization.

(a) rg = 0 (b) rg = 0.5

(c) rg = 1

Fig. 4: Visualization of rg at different values represented as

a green line over the retrieved path depicted in yellow

D. Remote Control

An important aspect of an effective HRI relies on the

choice of device used for such interaction. In this case,

the proposed approach integrates a PS5 controller due to

its commercial availability and the presence of adaptive

triggers. As illustrated in Figure 5, the operator takes charge

of the Rollercoaster module, using the left adaptive trigger

to initiate movement and adjust the parameter rg , while the

right thumbstick controls rd through lateral displacement.

To enhance the user experience and provide meaningful

feedback, the force exerted on the adaptive trigger, denoted

as ft, is dynamically adjusted based on the value of rg .

Specifically, the relationship is defined as follows:

ft = min((255 · rg) · λ, 255) (7)

This equation ensures that the adaptive trigger force, rep-

resented on a scale of 0 to 255, is scaled proportionally with

rg and then further amplified by a factor of λ = 1.2 chosen

for convenience. This amplification ensures that the operator

receives a stronger feedback response at lower velocities.

Fig. 5: Remote control interaction

IV. EXPERIMENT

To validate the proposed approach, a study for evaluation

is put forth. The study’s scope encompasses both empirical

and subjective assessment through utilization of the NASA-

TLX framework [7]. The study aims to ascertain whether the

suggested approach enhances the navigation capabilities and

experiences of pilots with different level of expertise.

A. Experiment Setting

Thus, 35 participants were recruited from the research

institution and through word of mouth. The participants’ ages

ranged between 24 and 61 years old (Mean = 33.61, SD

= 9.33). They were requested to rate their UAV piloting

experience on a scale of 1 to 5, where 1 indicated no

experience and 5 denoted proficiency (Mean = 1.77, SD

= 1.19). The experiment is performed within a simulated

environment utilizing ROS [20], Gazebo [9], and PX4-

SITL [15] with the cascade PID as the UAV’s controller

(Figure. 9 and 8). A map measuring 100x100 meters was

generated in Blender [4], placing 550 randomly positioned

pipe-like vertical obstacles. This configuration resulted in a

densely cluttered and intricate environment, as illustrated in

Figure 6. Participants were tasked with navigating toward

a designated goal, depicted as a green pipe (Figure 7). To

enhance orientation within the maze, an orange dot (Figure

7) was overlaid on the camera feedback. This dot represents

Fig. 6: Experiment environment

the direction of the goal, facilitating the navigation process.

Following the completion of an initial training phase, where

Fig. 7: Camera feedback during the experiments, goal is

highlighted as a green pipe, and goal direction is given by

the orange dot

the user acquired proficiency for 5 minutes in piloting the

UAV both with and without the Rollercoaster, the actual

testing phase was initiated. This phase involved attempting

to solve the maze three times without the Rollercoaster and

three more times with the option of using it. The experiment

failed if the simulation detected a collision. Participants could

use the Rollercoaster as they wished by controlling rg , but

it was not mandatory. This approach aimed to capture the

most natural interaction with the system and to understand

how users interacted with it. Throughout the experiment, we

monitored the drone’s position, orientation, and user interac-

tions, including rg and rd. Time tracking was implemented

during the evaluation but without imposing constraints on

users, as the map complexity was already high. We chose

not to report time results due to insignificant differences in

average times for successful experiments.

Fig. 8: Experiment Schema

Fig. 9: Laboratory experimental setup

Fig. 10: Nasa-TLX results. Error bars are standard error

B. Experiment Result

The test results are then being analyzed. At first, the survey

outcomes (Figure 10) is considered. The data highlights a

meaningful distinction between the two approaches. This

difference translates to a piloting experience that is less

stressful in terms of mental and physical demands, making it

easier with reduced effort while at the same time increasing

the performance. It is noteworthy that the only parameters

that exhibit substantial similarity between the two modes

pertain to the level of physical intensity. Despite the slight

difference, it is conceivable that this resemblance in intensity

stems from the necessity of coordinating actions to maintain

pressure on the velocity trigger while simultaneously focus-

ing on maintaining the desired direction in the Rollercoaster

mode. This convergence of physical demands results in a

similarity between controlling the UAV manually and using

the Rollercoaster. The trend revealed in the survey, indicating

an improvement in the piloting experience, is also clearly

reflected in the success rate (Figure 11). While the overall

success rate remains relatively low due to the intricacy

of the map, the completion rate with the Rollercoaster is

approximately three times higher compared to when it’s

not used. This finding further reinforces the validity of the

previously demonstrated outcome.

It is also noteworthy to highlight the disparity in success

rates when taking participants’ experience levels into ac-

count, as illustrated in Fig. 12 (with none of the participants

Fig. 11: Task completion Success Rate

Fig. 12: Success rate improvement at different experience

level

rating themselves as experience level 4). Interestingly, there

is a substantial improvement in performance, particularly ev-

ident when a pilot lacks confidence in their flying skills (up to

a four-fold improvement for non-expert pilots). Conversely,

the performance gain is either diminished or negligible when

a pilot is considered an expert. This phenomenon is believed

to be a result of the user’s confidence in their own abilities,

which, in turn, leads to skepticism regarding the system and,

consequently, difficulty in fully harnessing its advantages.

Another interesting point that supports the effectiveness of

the Rollercoaster is how it was used. Since participants were

encouraged but not forced to use it, its usage varied during

each run. When looking at the success rates (Figure 13),

it’s interesting to notice that the runs where pilots used the

Rollercoaster more confidently and for a higher percentage

of the time with the proposed solution were also the ones

where they were more likely to succeed.

Furthermore, when unsuccessful runs are taken into ac-

count, the trend persists. Rollercoaster trials exhibit a ten-

dency to approach, on average, a closer distance to the

goal compared to the manual attempts (Figure 14). This

reaffirms the Rollercoaster’s efficacy in enhancing the pilot’s

experience while navigating through complex environments.

Therefore, the results highlighted a significant overall

performance improvement achieved by users, with a notewor-

thy correlation between Rollercoaster usage and expertise.

This demonstrates the framework’s capability to enhance the

experience, especially for novice users. The findings also

indicated that, on average, a higher level of system usage

positively correlated with mission success. Furthermore, even

in instances where the task was not completed, participants

were able to approach the goal more closely on average.

However, as the primary goal of the system is to enhance the

Fig. 13: Rollercoaseter usage. Error bars are standard error

Fig. 14: Distance to the goal on unsuccessful trials. Error

bars are standard error

piloting experience while maintaining the decision-making

process, it’s important to acknowledge the possibility of

crashes. During the experiment, several noteworthy patterns

leading to crashes emerged. Occasionally, participants ex-

hibited a lack of confidence in the system, leading them

to either release the trigger from the Rollercoaster mode

while was in a dangerous situation or make rapid direc-

tional changes to the planner. These behaviors were more

pronounced when the UAV had to navigate through tight

column spaces. This raised concerns about the planner’s

execution behavior, prompting participants to switch between

the Rollercoaster and manual modes, inadvertently causing

unintended crashes. Experience often helps mitigate such

behaviors, yet they could also be addressed through improved

interaction design. For instance, the direct control of the

UAV’s rd using the stick might be replaced by a smoother

transition, thus potentially reducing the likelihood of such

occurrences.

V. REAL-WORLD TESTING

Despite the proposed work’s primary focus on evaluating

the interaction framework, a test was also conducted to

demonstrate the framework’s real capability. This test was

performed on a FPV-like drone equipped with a Voxl2[16]

which as integrated PX4[15] and a RealSense d435[8] serv-

ing as the primary depth sensor. The test involved navigating

toward an obstacle, as depicted in the setup Figure 15.

Figure 16 illustrates the disparities between the user input

and the actual trajectory followed by the UAV. In this

scenario, the operator only controlled the drone’s velocity

and direction, while the UAV itself was responsible for

navigating around obstacles. The arrows in the plot represent

the rd, which on purpose were pointed towards the obstacle.

However, as indicated by the dots representing the UAV

trajectory, the obstacle was successfully avoided.

While performing the navigation, the operator remained

Fig. 15: Test setup

Fig. 16: UAV trajectory

aware of the ongoing process through the augmented inter-

face, as shown in Figure 17.

Fig. 17: Screenshot of the pilot UI view during flight

VI. CONCLUSION

In conclusion, the Rollercoaster framework presents an

innovative approach to enhance the human-robot interaction

(HRI) in teleoperating unmanned aerial vehicles. The oper-

ator actively participates in the planning process and retains

control over the UAV’s velocity using the rg parameter and

direction with rd. This collaborative approach empowers the

operator to guide the drone’s movement along the intended

path, while the drone autonomously ensures safety and

interprets spatial data. Through user testing, this framework

has been demonstrated to enhance the operator’s situational

awareness and reduce the mental effort required for drone pi-

loting by improving the interaction experience with elements

such as the overlaid trajectory and haptic feedback via the

adaptive triggers of the PS5 controller. Additionally, it is

crucial to emphasize the performance gains observed when

using the Rollercoaster system with a non-expert audience,

highlighting its advantages, especially for novice pilots.

Moving forward, future research will concentrate on refining

interaction design to address the aforementioned issues,

taking into account the integration of emerging technologies

such as immersive displays and haptic devices to enhance

human-robot interaction experiences. Finally, further real-

world tests will be conducted to more thoroughly assess

how communication delays, state estimation drift, and sensor

noise could impact the overall experience.

ACKNOWLEDGMENT

This work has been supported by the European Unions

Horizon 2020 Research and Innovation Programme AERO-

TRAIN under Grant Agreement No. 953454.

REFERENCES

[1] Jacopo Aleotti et al. “Detection of Nuclear Sources by

UAV Teleoperation Using a Visuo-Haptic Augmented

Reality Interface”. In: Sensors 17.10 (2017). ISSN:

1424-8220. DOI: 10 . 3390 / s17102234. URL:

https://www.mdpi.com/1424-8220/17/

10/2234.

[2] Connor Brooks and Daniel Szafir. “Visualization of

Intended Assistance for Acceptance of Shared Con-

trol”. In: 2020 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). 2020,

pp. 11425–11430. DOI: 10.1109/IROS45743.

2020.9340964.

[3] Jonathan Cacace, Alberto Finzi, and Vincenzo Lip-

piello. “A mixed-initiative control system for an Aerial

Service Vehicle supported by force feedback”. In:

2014 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems. 2014, pp. 1230–1235. DOI:

10.1109/IROS.2014.6942714.

[4] Blender Online Community. Blender - a 3D modelling

and rendering package. Blender Foundation. Stichting

Blender Foundation, Amsterdam, 2018. URL: http:

//www.blender.org.

[5] Sony Interactive Entertainment. DualSense Wireless

Controller. https : / / www . playstation .

com / en - us / accessories / dualsense -

wireless-controller/. 2021.

[6] Okan Erat et al. “Drone-Augmented Human Vision:

Exocentric Control for Drones Exploring Hidden Ar-

eas”. In: IEEE Transactions on Visualization and

Computer Graphics 24.4 (2018), pp. 1437–1446. DOI:

10.1109/TVCG.2018.2794058.

[7] Sandra G Hart and Lowell E Staveland. “Develop-

ment of NASA-TLX (Task Load Index): Results of

empirical and theoretical research”. In: Advances in

psychology 52 (1988), pp. 139–183.

[8] Leonid Keselman et al. “Intel RealSense Stereoscopic

Depth Cameras”. In: CoRR abs/1705.05548 (2017).

arXiv: 1705.05548. URL: http://arxiv.org/

abs/1705.05548.

[9] N. Koenig and A. Howard. “Design and use paradigms

for Gazebo, an open-source multi-robot simulator”.

In: 2004 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS) (IEEE Cat.

No.04CH37566). Vol. 3. 2004, 2149–2154 vol.3. DOI:

10.1109/IROS.2004.1389727.

[10] Chuhao Liu and Shaojie Shen. “An Augmented Real-

ity Interaction Interface for Autonomous Drone”. In:

2020 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS). 2020, pp. 11419–

11424. DOI: 10 . 1109 / IROS45743 . 2020 .

9341037.

[11] Sikang Liu et al. “Planning Dynamically Feasible Tra-

jectories for Quadrotors Using Safe Flight Corridors in

3-D Complex Environments”. In: IEEE Robotics and

Automation Letters 2.3 (2017), pp. 1688–1695. DOI:

10.1109/LRA.2017.2663526.

[12] Dylan P. Losey and Marcia K. O’Malley. “Trajec-

tory Deformations From Physical Human–Robot In-

teraction”. In: IEEE Transactions on Robotics 34.1

(2018), pp. 126–138. DOI: 10.1109/TRO.2017.

2765335.

[13] Carlo Masone et al. “Semi-autonomous trajectory gen-

eration for mobile robots with integral haptic shared

control”. In: 2014 IEEE International Conference on

Robotics and Automation (ICRA). 2014, pp. 6468–

6475. DOI: 10.1109/ICRA.2014.6907814.

[14] Carlo Masone et al. “Shared planning and con-

trol for mobile robots with integral haptic feed-

back”. In: The International Journal of Robotics

Research 37.11 (2018), pp. 1395–1420. DOI: 10 .

1177/0278364918802006. eprint: https://

doi . org / 10 . 1177 / 0278364918802006.

URL: https : / / doi . org / 10 . 1177 /

0278364918802006.

[15] Lorenz Meier, Dominik Honegger, and Marc Polle-

feys. “PX4: A node-based multithreaded open source

robotics framework for deeply embedded platforms”.

In: 2015 IEEE International Conference on Robotics

and Automation (ICRA). 2015, pp. 6235–6240. DOI:

10.1109/ICRA.2015.7140074.

[16] ModalAI. VOXL2: A Powerful Companion Com-

puter for Drones. https : / / www . modalai .

com / products / voxl - 2 ? variant =

39914779836467. Accessed 2024-02-08.

[17] Marcin Odelga, Paolo Stegagno, and Heinrich H.

Bülthoff. “Obstacle detection, tracking and avoidance

for a teleoperated UAV”. In: 2016 IEEE International

Conference on Robotics and Automation (ICRA).

2016, pp. 2984–2990. DOI: 10.1109/ICRA.2016.

7487464.

[18] Marcin Odelga et al. “A Self-contained Teleoperated

Quadrotor: On-Board State-Estimation and Indoor Ob-

stacle Avoidance”. In: 2018 IEEE International Con-

ference on Robotics and Automation (ICRA). 2018,

pp. 7840–7847. DOI: 10 . 1109 / ICRA . 2018 .

8463185.

[19] F.J. Perez-Grau et al. “Semi-autonomous teleoperation

of UAVs in search and rescue scenarios”. In: 2017

International Conference on Unmanned Aircraft Sys-

tems (ICUAS). 2017, pp. 1066–1074. DOI: 10.1109/

ICUAS.2017.7991349.

[20] Stanford Artificial Intelligence Laboratory et al.

Robotic Operating System. Version ROS Melodic

Morenia. May 23, 2018. URL: https://www.ros.

org.

[21] Ryo Suzuki et al. “Augmented Reality and Robotics:

A Survey and Taxonomy for AR-Enhanced Human-

Robot Interaction and Robotic Interfaces”. In: Pro-

ceedings of the 2022 CHI Conference on Human

Factors in Computing Systems. CHI ’22. New Or-

leans, LA, USA: Association for Computing Machin-

ery, 2022. ISBN: 9781450391573. DOI: 10.1145/

3491102.3517719. URL: https://doi.org/

10.1145/3491102.3517719.

[22] Jesus Tordesillas et al. “Real-Time Planning with

Multi-Fidelity Models for Agile Flights in Unknown

Environments”. In: 2019 International Conference on

Robotics and Automation (ICRA). 2019, pp. 725–731.

DOI: 10.1109/ICRA.2019.8794248.

[23] Karl D. von Ellenrieder et al. “Shared human–robot

path following control of an unmanned ground

vehicle”. In: Mechatronics 83 (2022), p. 102750.

ISSN: 0957-4158. DOI: https : / / doi .

org / 10 . 1016 / j . mechatronics .

2022 . 102750. URL: https : / / www .

sciencedirect . com / science / article /

pii/S0957415822000083.

[24] Michael E. Walker, Hooman Hedayati, and Daniel

Szafir. “Robot Teleoperation with Augmented Reality

Virtual Surrogates”. In: 2019 14th ACM/IEEE Interna-

tional Conference on Human-Robot Interaction (HRI).

2019, pp. 202–210. DOI: 10.1109/HRI.2019.

8673306.

[25] Qianhao Wang et al. “GPA-Teleoperation: Gaze En-

hanced Perception-Aware Safe Assistive Aerial Tele-

operation”. In: IEEE Robotics and Automation Letters

7.2 (2022), pp. 5631–5638. DOI: 10.1109/LRA.

2022.3153898.

[26] Mohammad Kassem Zein et al. “Deep Learning and

Mixed Reality to Autocomplete Teleoperation”. In:

2021 IEEE International Conference on Robotics and

Automation (ICRA). 2021, pp. 4523–4529. DOI: 10.

1109/ICRA48506.2021.9560887.

[27] Mohammad Kassem Zein et al. “Enhanced Teleop-

eration Using Autocomplete”. In: 2020 IEEE In-

ternational Conference on Robotics and Automation

(ICRA). 2020, pp. 9178–9184. DOI: 10 . 1109 /

ICRA40945.2020.9197140.

Point, Segment, and Inspect: Leveraging Promptable Segmentation

Models for Semi-Autonomous Aerial Inspection

Riccardo Franceschini1,2, Javier Rodriguez Marquez1, Matteo Fumagalli2 and Julian Cayero Becerra1

Abstract— Operating unmanned aerial vehicles (UAVs) for
assets inspections poses distinct challenges encompassing the
need to maintain a safe distance from the inspection area,
ensure correct orientation towards the inspected surface, and
achieve comprehensive coverage of the entire surface. Achieving
these tasks is inherently complex and stressful. Therefore, a
novel approach that seeks to enhance the piloting experience
by harnessing the latest advancements in segmentation models,
such as Segment Anything Model (SAM), is proposed. These
models, thanks to their prompting capabilities, allow seamless
communication between the operator and the UAV, opening up
the possibility of defining intricate inspection regions through
simple interactions. Within this approach, decision-making
authority remains with the operator, while the UAV takes on the
demanding task of segmenting the designated area and devising
an appropriate traversal plan. Throughout this process, the
operator’s situational awareness is heightened through visual
cues overlaid on the camera stream and a 3D panel present-
ing information of the drone position and spatially sensed
data. This teleoperation framework allows the operator to
maintain continuous control of the ongoing operation through
a simplified interface. The paper delineates both the system
and the methodology employed, showcasing the effectiveness
of integrating segmentation models into the decision-making
workflow. The validity of the proposed framework is established
through testing within a photorealistic UAV simulator along
with real experiments in a controlled laboratory environment.

I. INTRODUCTION

Teleoperation remains a prevalent approach for human-

robot interaction in modern robotics, especially with un-

manned aerial vehicles (UAVs). The collaboration between

the drones and the operators is crucial in ensuring safety in

tasks that require precise navigation in difficult to navigate

and critical environments, as mentioned in [1, 25]. To en-

hance user experience, the literature has proposed diverse

methods to foster teamwork between operators and robots,

achieved through extended reality (XR) interfaces and shared

control strategies [29]. For instance, in [21, 7], XR was uti-

lized to control and visually represent the information sensed

by autonomous robots in an intuitive manner. Similarly, in [9]

and [34], visual feedback was employed to enhance operator

awareness and reduce pilot workload. On the other hand,

works such as [20], [15], and [16] focused on simplifying

various manipulation activities. Additionally, in [5], visual

cues were incorporated to indicate user paths.

1Eurecat, Centre Tecnològic de Catalunya, Robotics and
Automation Unit, Cerdanyola del Vallès, Barcelona, Spain.
[riccardo.franceschini, julian.cayero,
javier.rodriguez]@eurecat.org

2 Automation and Control group, Department of Electrical Engineering,
Danish Technical University, Elektrovej, Building 326, DK-2800 Kgs.
Lyngby Denmark mafum@elektro.dtu.dk

Paper Video: https://youtu.be/TvmkFXQlA60

Concurrently, recent advancements in computer vision,

exemplified by Vision Transformer (ViT) [19] and Segment

Anything Model (SAM) [17], have significantly elevated

image understanding capabilities. SAM’s promptable seg-

mentation prowess, along with its impressive zero-shot capa-

bilities, has unlocked a wide array of potential applications.

Researchers have explored SAM’s interaction across domains

like medical imaging [31, 30], image editing [33], and Neural

Radiance Fields (NerF) [4], among others. Nevertheless,

these models often rely on resource-intensive backbones

unsuitable for real-time UAV interactions due to their con-

strained resources. Thus, researchers have endeavored to en-

hance real-time suitability through techniques like distillation

[32] and architectural variations [35, 36, 13].

Taking inspiration from [3], which employed the concept

of interactive object segmentation to achieve accurate de-

tection and manipulation tasks, this paper aims to leverage

the latest advancements in promptable segmentation models

to enhance the UAV pilot experience in the context of

aerial inspection. The objective is to introduce an innovative

interaction framework that, to the best of our knowledge, has

not been published yet, aiming to simplify the task of visually

defining and inspecting surfaces. This approach allows the

operator to maintain control throughout the entire operation

while harnessing the capabilities of a segmentation model

to define detailed inspection areas, eliminating the need for

laborious manual area definition. Interactive segmentation is

seamlessly integrated with an XR interface, which through

a monitor allows real-time visualization and control of the

proposed regions. The segmented regions are subsequently

linked with a planner that utilizes the extracted spatial

segmentation to generate a path to cover them. To close

the interaction loop, it is also proposed to integrate the

SONY DualSenseTM Wireless Controller [8], although other

options such as RC controllers could be considered. This

controller facilitates tasks like defining areas, controlling the

path, and taking over control when necessary. The proposed

framework is validated within the Flightmare [27] photore-

alistic graphic simulator, utilizing ROS [28], Gazebo [18],

and RotorS [10] for physics simulation. Further evaluation

is also proposed to showcase its ability to run on a real

platform with limited processing capabilities.

II. METHODOLOGY

This section provides an overview of the methodology

used for detection, planning, and the distribution of control

between the UAV and the operator. It is assumed that the

UAV has the ability to perceive its three-dimensional envi-

ronment, estimate odometry, and orient its camera toward any

direction, either through its omnidirectional capabilities [12]

or through vision systems equipped with gimbal or fisheye

cameras capable of reaching any angle [11]. The following

sections will begin by covering the detection procedure

(Section II-A), followed by the planning process (Section II-

B). Subsequently, an architecture for integrating the operator

into the planning loop is proposed (Section II-C), and finally,

the visualization technique is expounded upon (Section II-D).

A. Detection

The current section focuses on the detection pipeline,

which encompasses the transition from 2D extraction to 3D

data manipulation. For the sake of simplicity, it is assumed

that the information collected from the camera sensor also

has an equivalent in spatial data, thus enabling the retrieval

of its position in space. The proposed framework, is model

agnostic as long the model can be prompted by positive

and negative point definition. Depending on computation

availability the segmentation model can be interchanged

based on the use case, in this paper we deployed HQ-SAM

[13] in the simulation environment, which uses TinyViT [32]

variant as its backbone. This selection is due to its capacity to

maintain highly detailed segmentation masks while signifi-

cantly reducing computational costs compared to the original

backbone. While for the deployment on embedded hardware

with limited capability FastSAM [36] is chosen. Thus, to

query the model, consider a point p in 2D space, expressed

as p = (x, y), where x and y are the cartesian coordinates of

the point over the image plane. Furthermore, consider a label

l belonging to the set {0, 1}, where 0 signifies negative points

and 1 corresponds to positive ones. This label l is assigned

to a point p, indicating 1 if there is an area that should be

included in the segmentation mask and 0 for areas that should

be excluded. Consequently, the model is fed with a collection

of points along with their corresponding labels, denoted as

P . Each element within P comprises a pair consisting of a

point p and its associated label l:

P = {[p0, l0], [p1, l1], . . . , [pn, ln]} (1)

Following the indication from P , the network retrieves a

mask, from which contours are extracted using OpenCV [2].

These contours are then subjected to filtration, retaining only

the primary contours. Given the satisfactory outcome of the

2D segmentation process, the identified polygon serves as the

foundation for extracting the desired point cloud, denoted

as P = {xi | i = 1..N}, where each point xi ∈ R
3 is

retrieved from depth information by extracting the points that

are within the extracted polygon and converted to 3D points

using the camera information matrix.

Initially, the points undergo voxelization and are subjected

to geometrical outlier removal, following algorithms outlined

in [37]. This step aims to eliminate any potential errors

stemming from the segmentation process that might result in

extraneous points. Then, the normal vectors ni = {xi, yi, zi}
of P are derived using covariance analysis. It is important

to note that these normals might exhibit opposing directions.

Consequently, an adjustment is performed to ensure that all

normals are oriented to face the camera frame. Subsequently,

the designated inspection area is forwarded to the planning

pipeline for further processing.

B. Planning

Assuming the presence of a segmented surface represented

by P . The objective of the planner is to generate an arrange-

ment of points ki ∈ R
3, positioned at a specified distance

ds from the surface into the direction of the surface normal

ni and with camera orientation oi ∈ R
3 perpendicular to the

surfaces such as oi = −ni∀i . Consequently, a path can be

formulated as follows:

K = {(k0,o0), (k1,o1), (k2,o2), . . . , (kn,on)} (2)

Thus, as starting point to ensure coverage of the surface the

voxelixed points in P are used. Then, each point is translated

by a distance of ds along the normal ni:

ki = pi + dsni (3)

Through this process, an unordered sequence of waypoints

K is generated. To address this, the problem is reformulated

into a classical Traveling Salesman Problem (TSP), with

the goal of minimizing the total path length required to

traverse the entire sequence of waypoints. Although the

TSP is known to be NP-hard, the number of waypoints

in this context is limited and there is no constant need to

dynamically update the path. Hence, the 2-opt algorithm

[6] is employed to retrieve the ordered sequence K⋆. This

local search optimization technique starts with an initial

tour and repeatedly improves it by swapping two edges to

reduce tour length until no more improvements can be made.

While not guaranteed to find the optimal solution, it is a

computationally efficient method for obtaining high-quality

TSP solutions. A visual example of K⋆ at distance ds with

respect to a detected area P is reported in Fig.2

Fig. 2: Visual representation of UAV reference frames, K⋆

C. Remote Control

Efficient Human-Robot Interaction (HRI) hinges on a

crucial factor: the device employed for communicating with

the robot. In this context, the approach presented in this

paper integrates a PS5 controller. This choice is motivated

by the controller’s widespread commercial availability and

its customizable flexibility. In Fig. 3, the configuration for

interacting with the UAV is depicted. The UAV orchestrates

Planning

Pilot Interface

Camera

Odometry

Position
Controller

Segmentation Model

Status

Waypoints Control

Region Extraction

2-opt TSP

Points

Wp Control

Status Manager

Environment

Detection

Point Drawing

Path Drawing

Segmentation Drawing

Visualization

Fig. 1: The provided diagram illustrates the interaction dynamics between the operator and the UAV. More precisely, the

suggested module receives input points denoted as P , status indications marked as S, or manual waypoint commands

issued by the operator. Concurrently, it acquires odometry data and camera information from the UAV. Based on the

operator’s specified status, the proposed layer employs a segmentation model to segment the camera data, utilizing the

operator’s input points (P). Subsequently, it undertakes the path planning across the identified area, effectively addressing the

Traveling Salesman Problem (TSP) with the local search 2-opt algorithm. The module then manages waypoints, either through

manual directives or autonomous procedures. Running in parallel, the visualization module is responsible for upholding a

comprehensive situational awareness for the operator. This is achieved by displaying a range of information on the user

interface. This information dynamically transitions from interactive points and segmentation masks during the segmentation

phase to proposed 2D and 3D plans during the planning and waypoint following stages.

Fig. 3: Controller Interaction

various phases of the inspection, including detection, plan-

ning, and movement through a series of waypoints. These

phases are encoded in different states, which are as follows:

S = {Free flight,

Aim To Surface,

Plan To Surface,

Auto Move To Surface,

Manual Move To Surface}

To facilitate effective interaction with the system, the opera-

tor must have the capability to seamlessly transition between

those states. The Free flight mode is initiated by pressing the

circle button. This mode allows the operator to assume con-

trol of the UAV at any time, granting the complete authority

over the UAV as they would have in a normal position control

mechanism. Subsequently, by pressing the arrow down but-

ton, the Aim To Surface mode is activated. During this phase,

the operator defines positive and negative points denoted as

P on the image. To achieve this, the operator utilizes the

left and right thumbsticks to control positive and negative

pointers, which are consistently displayed over the camera

feedback. Confirming each point is as simple as pressing

the opposite thumbstick, while undoing a point requires

pressing the left trigger. This process provides the model with

the necessary labels for performing segmentation. Once the

operator is satisfied with the desired segmentation, pressing

the arrow down button again activates the Plan To Surface

state. In this state, the path (K⋆) is retrieved and displayed on

the operator interface. If the operator approves the retrieved

path, pressing the arrow down button advances the state

to Auto Move To Surface, initiating the UAV’s automatic

movement along the retrieved waypoints by sending it to

the next waypoint if the UAV’s position is within a radius

r from the current waypoint. Whenever the operator wishes

to assume control over the movement along the waypoints,

pressing the arrow down button once more enables the

Manual Move To Surface mode. In this mode, using the

left and right arrow buttons, the operator can navigate the

waypoints within K⋆, moving both forwards and backwards.

Continuing with the downward arrow progression, the UAV

will alternate between the Auto Move To Surface and Man-

ual Move To Surface modes until the UAV either completes

traversing K⋆ or the operator presses the circle button. A

schematic representation of the state machine is reported in

Fig. 4.

Fig. 4: This scheme represents the transition between differ-

ent states (S), with the downward arrow button responsible

for switching between states and a circle used to regain

control

D. Visual Feedback

Ensuring the pilot’s continuous involvement and awareness

during flight operations is of utmost importance. This re-

quires real-time communication of information and ongoing

processes within the UAV to the pilot via their visualization

device, which can take the form of a tablet or monitor.

In the proposed solution, there are three key aspects that

must be visually presented to keep the operator informed

and engaged. Firstly, in the Aim To Surface state, when

the segmentation area is being defined, the user observes

two distinct points: a green point and a red point. These

points symbolize the positive and negative points intended

for transmission as prompts to the model. As detailed in

Section II-C, these points are manipulated and continually

updated using the controller. Upon confirmation by pressing

the thumbstick, they become permanently marked on the

image. Simultaneously, the segmentation area is consistently

outlined and revised in accordance with the user-defined

points P , as reflected in the camera feedback Fig 5. This

multifaceted visualization approach ensures that the pilot

remains informed about the ongoing processes within the

UAV and allows for active participation in decision-making.

Within this illustration, the two green dots situated at the

upper section of the building delineate the points P . Beneath

them, another pair of dots, one green and one red, signifies

the thumbstick-controlled pointing dots. Additionally, the

contour of the selected surface is highlighted to draw the

Fig. 5: P definition and visualization on camera stream

Fig. 6: Path Visualization on camera feedback

operator’s attention to the proposed region. If the operator

find the segmentation satisfactory and opt to switch to the

Plan To Surface state, the path is visualized as depicted in

Fig. 6. This visualization is also reproduced in the 3D repre-

sentation shown in Fig. 7, where comprehensive orientation

information of the drone is also provided. These representa-

tions serve to provide the operator with a clear understanding

of the spatial aspects and assist in decision-making and oper-

ational coordination. Subsequently, upon transitioning to ei-

ther the Auto Move To Surface or Manual Move To Surface

state, the camera stream presents a progress indicator situated

at the top right corner, displaying the percentage of comple-

tion along K⋆ (Fig. 8). This feature empowers the operator

to retain control over the surveyed surface while being

informed of the ongoing execution progress. Concurrently,

the 3D visualization (Fig 7) undergoes updates to reflect

the orientation and position of the drone as it traverses K⋆.

This real-time representation provides a dynamic overview

Fig. 7: Visualization of the segmented surface and K⋆

Fig. 8: Visualization of the path completion K⋆

of the drone’s movement and orientation, contributing to

the operator’s comprehensive understanding and effective

maneuvering throughout the operation.

III. EVALUATION IN SIMULATION

This section is dedicated to evaluating the performance

of the proposed approach when segmenting and inspecting

various surfaces. The assessment was conducted within the

Flightmare [27] photorealistic graphics simulator, making

use of ROS [28], Gazebo [18], and RotorS [10] for physics

simulation. The objective is to ascertain whether the inte-

gration of a segmentation model can enhance the operator’s

experience by minimizing the number of inputs needed to

define intricate areas. To achieve this, the evaluation has been

conducted within a simulated industrial environment acces-

sible through Flightmare. This environment is particularly

suitable for such tests due to its photorealistic nature and

the availability of infrastructures akin to those encountered

by an operator during daily tasks. The experiments were

conducted using a GTX1080ti [24], enabling HQ-SAM to

process images at a resolution of 1280×720 at approximately

7Hz. This, thanks to the decoupled segmentation and visu-

alization processes, allowed for a seamless interaction with

the operator. To assess performance, different structures, such

as tanks, containers, roofs, and chimneys, were evaluated as

depicted in Fig. 9. These images demonstrate the capability

to accurately segment intricate structures with minimal user

intervention. In the provided example, a maximum of four

points (P) – encompassing negative and positive instances –

were required. Furthermore, the resulting segmented clouds

and paths are illustrated in Figs. 9i, 9j, 9k and 9l. The

extracted set of points (P) are also evaluated, showcasing

the filtering procedure’s efficacy in isolating the desired

points. As a result, the generated paths (K⋆) consistently

align with the surfaces. Thus if the operator is satisfied

with the retrieved path can proceed and change the status

to Auto Move To Surface and start the inspection, on the

other hand if the segmentation is unsucessfull the operator

is always in control and able to change and move back.

IV. REAL-WORLD EVALUATION

To further validate the performance of the interaction

process, a real platform test was conducted. This test utilized

an FPV-like drone equipped with a Voxl2 [23] board, which

integrates a Qualcomm QRB5165 [26] SoC capable of

performing onboard inference for deep learning models at 15

TOPS. This setup enabled us to deploy a quantized version of

FastSAM [36], facilitating onboard inference at a rate of 5Hz.

Thanks to the decoupled visualization and inference pipeline,

we were able to maintain a video feedback at 30Hz on the

user interface. The flight controller PX4 [22] is integrated

within the board, while a RealSense d435 [14] serves as the

primary depth sensor. The interaction pipeline was tested in

two distinct scenarios: a pipe-like structure and a flat wall

surface with a patch to be segmented (Fig. 10).

Fig. 10: Experiment Setting

As shown in Fig. 11, the operator can delineate regions

by specifying a single positive point (Fig. 11a and 11b).

(a) Pipe Segmentation (b) Wall Segmentation

Fig. 11: Point Segmentation and Plan of a pipe

The surface extraction results are presented in Fig. 12 for

the pipe scenario and Fig. 13 for the wall patch scenario.

These plots illustrate the executed trajectory together with

the segmented point cloud, demonstrating the system’s ca-

pability to accurately extract the desired object and follow a

consistent orientation aligned with the inspected surface.

V. CONCLUSION

In conclusion, the framework presented in this paper

introduces an innovative approach to enhance HRI while

teleoperating UAV for surface analysis. In this approach,

the operator takes an active role in the decision-making

process by defining points of interest, which are used by

the segmentation model to perform RGB segmentation. The

segmented area is then processed through a point cloud

extraction pipeline to retrieve the spatial data and eliminate

undesired elements from the RGB segmentation. Subse-

quently, the refined segmentation data is employed in a local

search algorithm to efficiently solve the Traveling Salesman

(a) P : 3 pos, 1 neg (b) P : 2 pos, 1 neg (c) P : 1 pos, 2 neg (d) P : 1 pos

(e) Tank path visualization (f) Container path visualization (g) Roof path visualization (h) Chimney path visualization

(i) Tank P and K
⋆ (j) Container P and K

⋆ (k) Roof P and K
⋆ (l) Chimney P and K

⋆

Fig. 9: Anecdotal performance comparison involving various inspection surfaces, the first row displays the operator-selected

points and the extracted mask, the second row highlights the superimposed path, while the last row presents the extracted

spatial data alongside the path.

Fig. 12: Trajectory while inspecting a pipe

Problem (TSP), generating a path across the segmented spa-

tial data. Throughout this process, the operator remains in-

formed through visual cues, which include points of interest,

segmented surfaces, generated paths, and execution progress

indicators. Concurrently, control remains with the operator,

allowing to define points of interest, manage the drone’s sta-

tus and movement along the path. The proposed methodology

has undergone validation within both simulated environments

and real-world laboratory setups, demonstrating its capacity

to adapt to different environments and run on embedded

hardware at a satisfactory inference rate, allowing the op-

Fig. 13: Trajectory while inspecting a wall

erator to define complex inspection regions with minimal

interaction. It is important to highlight that this integration

takes place without imposing any additional complexities,

such as extra devices or interactions that could potentially

compromise operational safety. Moving forward, the next

steps will involve field evaluation, analyzing potential issues

due to sensor noise and communication delays.

ACKNOWLEDGMENT

This work has been supported by the European Unions

Horizon 2020 Research and Innovation Programme AERO-

TRAIN under Grant Agreement No. 953454 and by the

Catalan Government through the funding grant ACCIÓ-

Eurecat (Project TRAÇA – EUTFS).

REFERENCES

[1] Jacopo Aleotti et al. “Detection of Nuclear Sources by

UAV Teleoperation Using a Visuo-Haptic Augmented

Reality Interface”. In: Sensors 17.10 (2017). ISSN:

1424-8220. DOI: 10 . 3390 / s17102234. URL:

https://www.mdpi.com/1424-8220/17/

10/2234.

[2] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s

Journal of Software Tools (2000).

[3] Daniel J. Butler, Sarah Elliot, and Maya Cakmak.

“Interactive scene segmentation for efficient human-

in-the-loop robot manipulation”. In: 2017 IEEE/RSJ

International Conference on Intelligent Robots and

Systems (IROS). 2017, pp. 2572–2579. DOI: 10 .

1109/IROS.2017.8206079.

[4] Xiaokang Chen et al. “Interactive Segment Anything

NeRF with Feature Imitation”. In: arXiv preprint

arXiv:2305.16233 (2023).

[5] Andre Cleaver et al. “Dynamic Path Visualization for

Human-Robot Collaboration”. In: Companion of the

2021 ACM/IEEE International Conference on Human-

Robot Interaction. HRI ’21 Companion. Boulder, CO,

USA: Association for Computing Machinery, 2021,

pp. 339–343. ISBN: 9781450382908. DOI: 10.1145/

3434074.3447188. URL: https://doi.org/

10.1145/3434074.3447188.

[6] G. A. Croes. “A Method for Solving Traveling-

Salesman Problems”. In: Operations Research 6.6

(1958), pp. 791–812. ISSN: 0030364X, 15265463.

URL: http : / / www . jstor . org / stable /

167074 (visited on 08/16/2023).

[7] Jeffrey Delmerico et al. “Spatial Computing and Intu-

itive Interaction: Bringing Mixed Reality and Robotics

Together”. In: IEEE Robotics Automation Magazine

29.1 (2022), pp. 45–57. DOI: 10.1109/MRA.2021.

3138384.

[8] Sony Interactive Entertainment. DualSense Wireless

Controller. https : / / www . playstation .

com / en - us / accessories / dualsense -

wireless-controller/. 2021.

[9] Riccardo Franceschini, Matteo Fumagalli, and Ju-

lian Cayero Becerra. “Enhancing Human-Drone In-

teraction with Human-Meaningful Visual Feedback

and Shared-Control Strategies”. In: 2023 Interna-

tional Conference on Unmanned Aircraft Systems

(ICUAS). 2023, pp. 1162–1167. DOI: 10 . 1109 /

ICUAS57906.2023.10156190.

[10] Fadri Furrer et al. “Robot Operating System (ROS):

The Complete Reference (Volume 1)”. In: ed. by

Anis Koubaa. Cham: Springer International Publish-

ing, 2016. Chap. RotorS—A Modular Gazebo MAV

Simulator Framework, pp. 595–625. ISBN: 978-3-319-

26054-9. DOI: 10.1007/978-3-319-26054-

9_23. URL: http://dx.doi.org/10.1007/

978-3-319-26054-9_23.

[11] Andreas Humpe. “Bridge inspection with an off-the-

shelf 360° camera drone”. In: Drones 4.4 (2020),

p. 67.

[12] Mina Kamel et al. “The Voliro Omniorientational Hex-

acopter: An Agile and Maneuverable Tiltable-Rotor

Aerial Vehicle”. In: IEEE Robotics & Automation

Magazine 25.4 (Dec. 2018), pp. 34–44. DOI: 10 .

1109/mra.2018.2866758. URL: https://

doi.org/10.1109%2Fmra.2018.2866758.

[13] Lei Ke et al. “Segment Anything in High Quality”. In:

arXiv:2306.01567 (2023).

[14] Leonid Keselman et al. “Intel RealSense Stereoscopic

Depth Cameras”. In: CoRR abs/1705.05548 (2017).

arXiv: 1705.05548. URL: http://arxiv.org/

abs/1705.05548.

[15] Dongbin Kim and Paul Y. Oh. “Aerial Manipulation

using a Human-Embodied Drone Interface”. In: 2022

IEEE International Conference on Advanced Robotics

and Its Social Impacts (ARSO). 2022, pp. 1–7. DOI:

10.1109/ARSO54254.2022.9802972.

[16] Dongbin Kim and Paul Y. Oh. “Toward Avatar-Drone:

A Human-Embodied Drone for Aerial Manipulation”.

In: 2021 International Conference on Unmanned Air-

craft Systems (ICUAS). 2021, pp. 567–574. DOI: 10.

1109/ICUAS51884.2021.9476704.

[17] Alexander Kirillov et al. Segment Anything. 2023.

arXiv: 2304.02643 [cs.CV].

[18] N. Koenig and A. Howard. “Design and use paradigms

for Gazebo, an open-source multi-robot simulator”.

In: 2004 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS) (IEEE Cat.

No.04CH37566). Vol. 3. 2004, 2149–2154 vol.3. DOI:

10.1109/IROS.2004.1389727.

[19] Alexander Kolesnikov et al. “An Image is Worth

16x16 Words: Transformers for Image Recognition at

Scale”. In: 2021.

[20] Tsung-Chi Lin, Achyuthan Unni Krishnan, and Zhi

Li. “Comparison of Haptic and Augmented Reality

Visual Cues for Assisting Tele- manipulation”. In:

2022 International Conference on Robotics and Au-

tomation (ICRA). 2022, pp. 9309–9316. DOI: 10 .

1109/ICRA46639.2022.9811669.

[21] Chuhao Liu and Shaojie Shen. “An Augmented Real-

ity Interaction Interface for Autonomous Drone”. In:

2020 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS). 2020, pp. 11419–

11424. DOI: 10 . 1109 / IROS45743 . 2020 .

9341037.

[22] Lorenz Meier, Dominik Honegger, and Marc Polle-

feys. “PX4: A node-based multithreaded open source

robotics framework for deeply embedded platforms”.

In: 2015 IEEE International Conference on Robotics

and Automation (ICRA). 2015, pp. 6235–6240. DOI:

10.1109/ICRA.2015.7140074.

[23] ModalAI. VOXL2: A Powerful Companion Com-

puter for Drones. https : / / www . modalai .

com / products / voxl - 2 ? variant =

39914779836467. Accessed 2024-02-08.

[24] NVIDIA Corporation. GeForce GTX 1080 Ti. [GPU].

2017. URL: https://www.nvidia.com/en-

gb/geforce/graphics- cards/geforce-

gtx-1080-ti/specifications/.

[25] F.J. Perez-Grau et al. “Semi-autonomous teleoperation

of UAVs in search and rescue scenarios”. In: 2017

International Conference on Unmanned Aircraft Sys-

tems (ICUAS). 2017, pp. 1066–1074. DOI: 10.1109/

ICUAS.2017.7991349.

[26] Qualcomm Technologies, Inc. QRB5165 SoC Prod-

uct Brief. https : / / www . qualcomm . com /

content/dam/qcomm-martech/dm-assets/

documents/qrb5165-soc-product-brief_

87-28730-1-b.pdf. Year of Access.

[27] Yunlong Song et al. “Flightmare: A Flexible Quadro-

tor Simulator”. In: Conference on Robot Learning.

2020.

[28] Stanford Artificial Intelligence Laboratory et al.

Robotic Operating System. Version ROS Melodic

Morenia. May 23, 2018. URL: https://www.ros.

org.

[29] Ryo Suzuki et al. “Augmented Reality and Robotics:

A Survey and Taxonomy for AR-Enhanced Human-

Robot Interaction and Robotic Interfaces”. In: Pro-

ceedings of the 2022 CHI Conference on Human

Factors in Computing Systems. CHI ’22. New Or-

leans, LA, USA: Association for Computing Machin-

ery, 2022. ISBN: 9781450391573. DOI: 10.1145/

3491102.3517719. URL: https://doi.org/

10.1145/3491102.3517719.

[30] Junde Wu. “PromptUNet: Toward Interactive

Medical Image Segmentation”. In: arXiv preprint

arXiv:2305.10300 (2023).

[31] Junde Wu et al. Medical SAM Adapter: Adapting

Segment Anything Model for Medical Image Segmen-

tation. 2023. arXiv: 2304.12620 [cs.CV].

[32] Kan Wu et al. TinyViT: Fast Pretraining Distillation

for Small Vision Transformers. 2022. arXiv: 2207.

10666 [cs.CV].

[33] Jingfeng Yao et al. Matte Anything: Interactive Nat-

ural Image Matting with Segment Anything Models.

2023. arXiv: 2306.04121 [cs.CV].

[34] Mohammad Kassem Zein et al. “Deep Learning and

Mixed Reality to Autocomplete Teleoperation”. In:

2021 IEEE International Conference on Robotics and

Automation (ICRA). 2021, pp. 4523–4529. DOI: 10.

1109/ICRA48506.2021.9560887.

[35] Chaoning Zhang et al. “Faster Segment Anything:

Towards Lightweight SAM for Mobile Applications”.

In: arXiv preprint arXiv:2306.14289 (2023).

[36] Xu Zhao et al. Fast Segment Anything. 2023. arXiv:

2306.12156 [cs.CV].

[37] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun.

“Open3D: A Modern Library for 3D Data Process-

ing”. In: arXiv:1801.09847 (2018).

AeroAssistant: A Modern and Flexible UAV Teleoperation Framework

RICCARDO FRANCESCHINI∗, Eurecat, Centre Tecnològic de Catalunya, Robotics and Automation Unit, Spain

MATTEO FUMAGALLI, Automation and Control group, Department of Electrical Engineering, Danish Technical

University, Elektrovej, Lyngby, Denmark

JULIAN CAYERO BECERRA, Eurecat, Centre Tecnològic de Catalunya, Robotics and Automation Unit, Spain

Operating unmanned aerial vehicles (UAVs) is a non-trivial task, particularly in the context of asset inspections, where pilots encounter

unique challenges. These include navigating in cluttered and hazardous environments, maintaining a safe distance from the inspection

area, ensuring correct orientation towards the inspected surface, and achieving comprehensive coverage of the entire surface. Achieving

these tasks is inherently complex and stressful even for expert pilots. To enhance the navigation experience, this work introduces

AeroAssistant, a flexible teleoperation framework designed to facilitate drone operations trough a combination of shared control

algorithms and augmented reality visual cues. The primary objective of AeroAssistant is to propose a framework capable of providing

an intuitive and familiar teleoperation interface, which incorporates a system of plugins capable of simplify complex and tedious

tasks. This paper delineates the structural components of the framework, elucidates interaction paradigms, and outlines the features

currently integrated and deployed in real UAV systems within the AeroAssistant framework.

CCS Concepts: • Human-centered computing → Interaction techniques; Collaborative interaction.

Additional Key Words and Phrases: HRI, Augmented Reality, Shared Autonomy, Unmanned Aerial Vehicles

ACM Reference Format:

Riccardo Franceschini, Matteo Fumagalli, and Julian Cayero Becerra. 2024. AeroAssistant: A Modern and Flexible UAV Teleoperation

Framework. In Proceedings of Make sure to enter the correct conference title from your rights confirmation emai (Conference acronym

’XX). ACM, New York, NY, USA, 18 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs), thanks to their ability to move freely in space and reach remote areas, have emerged

as versatile tools in a variety of scenarios ranging from search and rescue operations to industrial inspections. In

particular, for industrial inspection, UAVs are utilized to manage critical infrastructure in our society, including roads

[36], bridges [24, 41], power lines [42], and wind turbine facilities [19]. The integrity of the infrastructure and the safety

of the operation are of utmost importance, where direct teleoperation by the operator remains the dominant control

paradigm. Therefore, collaborative efforts between drones and operators are essential to ensure safety, particularly

in tasks demanding precise navigation within challenging and critical environments, as emphasized in [1, 37]. To

enhance human-robot interaction, various methods have been proposed in the literature studying how extended reality

∗also with Automation and Control group, Department of Electrical Engineering, Danish Technical University, Elektrovej, Lyngby Denmark

Authors’ Contact Information: Riccardo Franceschini, riccardo.franceschini@eurecat.org, Eurecat, Centre Tecnològic de Catalunya, Robotics and

Automation Unit, Cerdanyola del Vallès, Barcelona, Spain; Matteo Fumagalli, mafum@dtu.dk, Automation and Control group, Department of Electrical

Engineering, Danish Technical University, Elektrovej, Lyngby, Lyngby, Denmark; Julian Cayero Becerra, julian.cayero@eurecat.org, Eurecat, Centre

Tecnològic de Catalunya, Robotics and Automation Unit, Cerdanyola del Vallès, Barcelona, Spain.

This article has been submitted to ACM Transactions on Human-Robot Interaction for consideration. Its contents may not be further disseminated until a

final decision regarding publication has been made and further permission has been granted.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

2 Franceschini et al.

(XR) and shared-control paradigms are used to ease collaboration by reducing friction in controlling even the most

complex systems while increasing operator situational awareness [43]. A more in-depth evaluation specifically about

UAV teleoperation is carried out in Section 2. However, to the best of our knowledge, a unified system capable of

integrating multiple shared interaction control algorithms, defined herein as flight plugins, alongside XR interfaces

while preserving a familiar pilot experience, has yet to be proposed. Therefore, the objective of this work is to introduce

AeroAssistant, a teleoperation framework designed to enhance the operator’s pilot experience by proposing a series

of plugins aimed at simplifying tedious and complex navigation tasks common during operation. The framework is

engineered with efficiency and flexibility in mind, employing a multithreaded architecture capable of maintaining a

satisfactory user experience even with constrained resources. This architecture abstracts the core functionalities from

the message-passing requirements, enabling the use of the same codebase with different communication frameworks

such as ROS1 [39], ROS2 [29], or other message-passing libraries like ZMQ [17]. The plugins aim to streamline the

teleoperation experience through a combination of enhanced user interfaces and shared control algorithms while

maintaining a familiar teleoperation control scheme with a commercial controller. Thus, the paper is structured as

follows: first, an overview of state of the art is proposed in Section 2, then the AeroAssistant architecture is described in

detail in Section 3, while a description of the current capabilities in terms of plugins showcased in Section 4.

2 RELATEDWORK

The landscape of human-robot interaction, especially in teleoperation scenarios, has seen a variety of approaches

aimed at improving user experience and system performance. Numerous studies have explored various strategies, such

as XR interfaces, shared control mechanisms employing haptic devices, integration of deep learning agents, as well

as the utilization of path planning and collision avoidance systems. Specifically focusing on drone interaction, these

approaches can be categorized broadly in different high-level categories.

Assisted Standard Pilot Interfaces: Systems like those discussed in [35, 34, 2] involve the operator managing

the UAV’s velocity similar to standard teleoperation. Collision avoidance algorithms are implemented between the

operator and the UAV to adjust the operator’s commands if they pose a collision risk. Another relevant form of assisted

teleoperation is studied in [8]. In this study, the authors explored teleoperation constrained to virtual surfaces, where

the operator defines geometric surfaces that restrict the UAV’s movement. This setup allows the pilot to control the

UAV’s movement simply by adjusting its position along these virtual surfaces.

Augmented Reality Interfaces for Point and Move: Studies like those detailed in [26, 47, 4, 45] present interfaces

designed for controlling nearly autonomous drones. These methods necessitate the use tablet or head-mounted displays

(HMDs), with interaction revolving around visualizing 3D data collected by the drone or the drone’s trajectory overlaid

on a physical model in front of the operator. The core interaction involves defining a destination point and visualizing

the UAV movement in space through the proposed interfaces representing a miniaturized world.

Haptic Control for Trajectory Manipulation: Other approaches, such as those explored in [3, 30, 28, 46, 31, 51],

focus on utilizing haptic devices for modifying trajectories, enhancing control experiences by offering various haptic

feedback schemes to users. These methods aim to involve the operator in the UAV control process, enabling them to

perform vertical and lateral displacements along a predefined trajectory while providing haptic feedback based on

obstacle and platform limitations.

Deep Learning Teleoperation: Noteworthy teleoperation methodologies are proposed in [50, 49], where authors

propose learning common trajectories, such as turns, straight lines, or circular shapes, using a deep learning agent that

Manuscript submitted to ACM

AeroAssistant: A Modern and Flexible UAV Teleoperation Framework 3

interprets the operator’s control input. The agent is then positioned between the operator and the UAV, taking control

when it recognizes the operator’s attempt to execute one of these trajectories, thereby executing precise movements.

Gaze and Body Control Navigation: Intriguing interaction methods are also introduced in [48, 11], where the

operator’s gaze is detected via an HMD and used to discern the operator’s intention, adjust the UAV trajectory, or

designate a point for UAV movement. Additionally, other studies such as [15] have explored using body gestures to

control drone movement.

XR assisted navigation:Other studies have investigated the use of enhanced visualization to improve the navigation

experience. For instance, [16, 11] demonstrated that employing augmented reality (AR) in a colocated environment,

displaying what the drone perceives, effectively improves teleoperation performance. Meanwhile, studies such as [18,

22] have explored the potential of using enhanced remote teleoperation to highlight points of interest or to create a

blend of virtual and real elements for a unique flight experience.

AeroAssistant:Our approach introduces a navigation interaction similar to classical teleoperation schemes discussed

in the Deep Learning and Assisted pilot methods, while integrating AR elements to enhance operator situational

awareness. Furthermore, our proposed framework aims to establish the foundation for a customizable teleoperation

experience by offering a unified architecture capable of facilitating shared and visually enhanced interactions.

3 SYSTEM OVERVIEW

For the AeroAssistant to function, it is assumed that the UAV can perceive its three-dimensional environment through

either a lidar or a depth camera, has an RGB camera, and can estimate its position and orientation in space pA ∈ R3,

qA ∈ H.

Fig. 1. A schematic representation of the UAV frame configuration

This section aims to explain the framework architecture, focusing on all the components involved in the system. In

Fig. 2, an overview schema is presented, consisting mainly of three components: a RemoteControl responsible for

interpreting user input, the AeroAssistant itself, and the Middleware responsible for abstracting platform-dependent

requirements such as PX4 [32] or DJI [9] from the actual framework. The following sections are then covering the

different parts of the system, starting with the orchestration and synchronization of the robot’s status among the

different elements (3.1). This is followed by a more in-depth explanation of the Middleware (3.2), the RemoteControl

(3.3), and finally, an analysis of the core of the AeroAssistant (3.4).

Manuscript submitted to ACM

4 Franceschini et al.

Middleware

Pilot Interface

RemoteControl

Fig. 2. General framework architecture

3.1 RobotStatus

To ensure coordination within the system and to reflect those changes in both the UAV behavior and the remote pilot

interface, it is crucial that all components are aware of the current robot status. Therefore, a state machine capable of

encoding the various statuses of the drone is proposed. The robot’s status BA comprises a series of base states S, which

are independent of any plugin implementation, each of which will have its own specific conditions.

S = {Idle, TakeOff , Land, Free_flight} (1)

These statuses enable pilots to maintain basic control over the UAV, similar to a normal teleoperation mechanism,

including autonomous landing and takeoff. To manage synchronization among the various actors of the framework,

a request-reply architecture is employed, with the middleware serving as an intermediary between the operator

control and the AeroAssistant. This setup ensures message passing and confirmation delivery, as depicted in Figure 3,

guaranteeing that all actors are correctly synchronized across different statuses and allowing bidirectional changes

in the framework status from both AeroAssistant and RemoteControl. This architecture provides operators with the

flexibility to consistently modify states, thereby maintaining full control of the system. At the same time, it empowers

the AeroAssistant to perform autonomous behaviors that may involve a sequence of internally coordinated states.

These states are promptly communicated to the operator and visualized in the interface, ensuring transparency and

awareness.

3.2 Middleware

The interaction middleware operates within the UAV and is responsible for maintaining communication among all

involved actors, including the remote pilot input, AeroAssistant, and the UAV itself. Its primary function is to create

an abstraction layer, similar to the one proposed in [40], which exposes common topics tied to the specifics of the

platform, such as specific routines for arming or sending commands to the platform. This layer is also fundamental

for synchronizing communication among all the actors, as explained in Section 3.1. By doing so, it enables both the

Manuscript submitted to ACM

AeroAssistant: A Modern and Flexible UAV Teleoperation Framework 5

M
id

dl
ew

ar
e

Req :
RC_MI

Req :
MI_AA

Rep:
AA_MI

Rep:
MI_RC

Req :
AA_MI

Req:
MI_RC

Rep :
RC_MI

Rep :
AA_MI

Change status from Remote Control to AA

Change status from AA to RemoteControl

R
em

ot
eC

on
tro

l

Fig. 3. Status change communication architecture

RemoteControl and the AeroAssistant to publish and subscribe to high-level topics for sending waypoints, arming, or

triggering specific routines, while also handling lower-level adjustments specific to the platform under the hood.

3.3 RemoteControl

The RemoteControl aspect of the framework is crucial for ensuring a natural and familiar navigation experience while

providing immediate access to the framework’s capabilities. For its commercial availability and ease of customization,

we utilize the SONY DualSenseTM Wireless Controller [10] as a reference, although integration of other RC controllers

is feasible without any complications. In order to work the remote controller has to be connected to a companion

computer in which run the software for handling all the message passing with the middleware, usually the computer

and the receiving device of the operator are the same but that is not an hard constraint. Since the AeroAssistant aim to

be a flexible framework with the goal of proposing an enhanced but familiar user experience, the controller needs to

change is behaviour depending on the state BA . Thus by default the operator have the following configuration as in

Fig. 4. In this case, the operator can take control and arm the UAV with the left arrow button, which is used to set the

Fig. 4. Standard interaction paradigm

UAV status to BA = Idle. By pressing the triangle button, the status changes to BA = TakeOff, initiating an autonomous

takeoff operation at a fixed height ℎm, defined as a parameter. Once the triangle button is pressed, it will then trigger

the status to BA = Land and initiate autonomous landing by descending. To initiate standard teleoperation in position

control, it is necessary to press the circle button, which sets the status to BA = Free_Flight.

Manuscript submitted to ACM

6 Franceschini et al.

3.4 AeroAssistant

RemoteControl

U
AV

Middleware

RobotStatus

O
perator

ImageManager

ImageManagerCOM

PathManager

PathManagerCOM

CloudManager

CloudManagerCOM

PositionManager

PositionManagerCOM

VisalizationManagerCOM

VisalizationManagerControlManager

ControlManagerCOM

DepthInformationOdometry Camera Path

Fig. 5. The provided diagram illustrates the structure of the AeroAssistant, highlighting the interaction and structure between the

Middleware, AeroAssistant, and RemoteControl. The AeroAssistant is responsible for receiving, filtering, and exposing information

from the UAV, passing it through passive managers to active ones. The diagram also highlights the interaction between the control

manager, which controls the platform through the Middleware, and the visualization manager, which maintains an enhanced

communication channel with the operator. Throughout all operations, everything is synchronized with the robot status, orchestrating

the entire system.

The analysis of the AeroAssistant framework now dive into its core structure, emphasizing its flexibility and adaptability.

Given the capability of the UAV to estimate its spatial position and perceive its surroundings, the framework integrates

a series of managers tasked with receiving, filtering, and analyzing incoming data. Each manager is encapsulated

within a communication wrapper, ensuring interoperability with other system components such as ROS1/2 or ZMQ,

tailored to specific system requirements. A detailed overview of the AeroAssistant is depicted in Fig. 5, illustrating its

composition with separate managers dedicated to distinct tasks. This architectural approach ensures the framework’s

autonomy, interoperability, and ease of maintenance. Moreover, these managers provide convenient API calls for

interaction with other framework components. Internally, they employ a semaphore multithreading resource-sharing

mechanism to securely and efficiently handle processed data. Furthermore, a distinction is made between active

and passive managers. Passive managers are primarily responsible for retrieving, processing, and sharing data with

other components. Examples include the PositionManager, ImageManager, PathManager, and CloudManager, which

receive sensory data from the UAV and additional information such as paths and odometry from external algorithms

when internal ones are not employed. On the other hand, the active managers include the ControlManager and the

VisualizationManager, which respectively interface with the UAV and the operator interface. The ControlManager

interprets user commands by combining information from other managers and transmits commands to the middleware,

which subsequently relays them to the UAV. Meanwhile, the Visualization Manager retrieves information from both

Manuscript submitted to ACM

AeroAssistant: A Modern and Flexible UAV Teleoperation Framework 7

user input and UAV data, combining them into meaningful visualizations for the operator over the camera feedback or

spatial representation.

4 PLUGINS

This section aims to expose the plugins currently being deployed within the AeroAssistant, showcasing the interaction

paradigms used both from a visualization point of view and RemoteControl perspective. It also describes how (is

expanded to include multiple functionalities and how those additional states are used to adjust visualization and

RemoteControl behaviors. Therefore, the following section addresses some of the plugins implemented, some of which

have already been explained and evaluated in separate publications. For this reason, the evaluation now focuses

more on the integration with the framework rather than the functionality and performance itself. The framework has

undergone testing on various hardware platforms, including LattePanda Delta3 [25], Intel Nuc [5], and Voxl2 [33].

Despite differences in performance across these platforms, the AeroAssistant consistently managed all computations,

maintaining a satisfactory framerate of 30Hz on the operator interface. In the following section, we present data

collected from a UAV running the framework on a VOXL2 platform. This platform integrates PX4 [32] onboard and

uses a fisheye camera with the Qualcomm Vision SDK [38] to estimate its position pA ∈ R3 and orientation qA ∈ H.

Additionally, a RealSense D435 [21] is used as a depth and visual sensor. The deployed plugins include Lock to a Point

Visually (Section 4.1), Move to a Point (Section 4.2), Align and Follow Any Surface (Section 4.3) [12], Rollercoaster

(Section 4.4), and Point Segment and Plan (Section 4.5).

4.1 Lock to a point

A common action required when piloting a UAV is the ability to select a point on the camera feedback, lock onto that

point, and maintain orientation and position towards it, counteracting possible degradation in position estimation, akin

to visual servoing. This feature is integrated within the framework by expanding robot’s states S as follows:

S = {S ∪ {Choose_Target, Following_Target}} (2)

An overall control interaction perspective is given in Fig. 6 where the operator (pressing the arrow up) changes the

status to BA = Choose_Target.

Fig. 6. Controller interaction for tracking a point

Next, the operator defines the area to track by moving an overlaid window of dimensions = × = pixels with the right

thumbstick over the camera stream, as highlighted in Fig. 6. Once the area of interest is defined, the operator presses the

Manuscript submitted to ACM

8 Franceschini et al.

arrow up again over the controller to initialize a Kernel Correlation Filter [7] over the previously defined patch. This

filter allows tracking of any image patch over the camera stream, as long as enough features can be tracked between

consecutive frames. During the operation, the operator receives visual cues overlaid on the camera stream, as depicted

in Figure 11, with varying visualizations contingent upon the success or failure of the tracking process. The center of

(a) Succesfull tracking (b) Failed tracking

Fig. 7. Different tracking visualizations

the tracked patch is then utilized to extract the position p8 ∈ R
3 and normal n8 = {=8G , =8~, =8I } of the point of interest,

relying on the depth information retrieved from the previously introduced CloudManager. Subsequently, the point and

normal estimations are averaged over : data samples to mitigate potential drift in position and orientation, yielding the

averaged values p8 and n8 . These averaged values are then utilized to determine the desired position and orientation of

the UAV, computed as a position at a distance W m from the point of interest p8

pd = p8 + Wn8 (3)

o3 = −n8 (4)

and then sent to the UAV position controller to maintain the position pA of the UAV in front of p8 . During the all process

the operator is also aware of the surrounding trough a 3D panel showcasing the extracted p3 as shown in Fig. 8.

Fig. 8. 3D panel visualization showcasing the extracted tracked point

Manuscript submitted to ACM

AeroAssistant: A Modern and Flexible UAV Teleoperation Framework 9

Moreover the interaction can be improved with the integration of an autonomous detection mechanism, which are

responsible of retrieving autonomously the p8 leaving the operator in charge of only initializing the detection and

control the correctness of the all approach. A schematic representation of the transition between states is given in Fig. 9

Free Flight
Choose_Target

Following_Target

Fig. 9. Transition between different states (for tracking a point

4.2 Move to a point

Another relevant plugin developed is the ability to select a point in the image plane and move towards it, ending up at a

user-defined distance W m meters from the obstacle and oriented towards the point of interest. In this case, the robot’s

state is updated as follows:

S = {S ∪ {Aiming_To_Target,Moving_To_Target}} (5)

The selection and the change of status to BA = Aiming_To_Target are triggered by pressing the square button on the

controller. In this mode, the operator defines a point p< ∈ R2 on the image plane by using the left thumbstick.

Fig. 10. Controller interaction for moving to a point

As shown in Fig. 10, the operator is presented with a visualization that encodes information about the normal

orientation of the surface within the proximity of p< using a rainbow color-scheme, with p< itself represented as a

yellow dot, as in Fig. 11a. This provides immediate feedback on the geometric structure of the selected area and the

feasibility of the selected point.

Then, the point p8 and orientation o8 are extracted as in (3) and (4), respectively, while a planner, in this case, is

deployed to guarantee a safe path. The retrieved path is visualized in the 3D panel as shown in Fig. 11b.

Manuscript submitted to ACM

10 Franceschini et al.

(a) Camera Visualization when aiming to a point p< (b) 3D visualization with the extracted region, retrieved path and p<

Fig. 11. Different move to a point visualizations

The method introduced in [27] has been adopted as a path planner, primarily due to its efficiency in finding collision-

free paths. This efficiency is attributed to its ability to formulate the path generation problem as a quadratic program

(QP) featuring the Safe Flight Corridor (SFC) concept. The SFC comprises a collection of convex, overlapping polyhedra

that model the available free space and establish a continuous path from the robot’s current position to the goal

destination. By integrating the SFC, a set of linear inequality constraints is introduced into the QP, thereby facilitating

real-time motion planning.

Regarding mapping, the methodology builds upon the research presented in [44]. This work introduces the concept of

a sliding window approach to mapping, characterized by the continuous updating of a local map using spatially sensed

data. This technique guarantees the availability of a reliable map with sufficient coverage for navigation requirements

while simultaneously addressing challenges related to drift and the computational resources demanded by global

mapping methods.

Upon pressing the square button again, the state transitions to BA = Moving_To_Target, initiating the path following

procedure. Consequently, the PathManager provides the path, defined as a set of # points P = {pA , p0, p1, . . . , p<} ∈ R3,

to the ControlManager. The ControlManager then guides the UAV by transmitting the next waypoint p8+1 only when

the UAV is within A meters from p8 . A schematic representation of the transition between states is given in Fig. 12

Free Flight
Aim_To_Target

Moving_To_Target

Fig. 12. Move to a point state (transitions.

Manuscript submitted to ACM

AeroAssistant: A Modern and Flexible UAV Teleoperation Framework 11

4.3 Align and Follow Surface

Another relevant feature deployed within AeroAssistant is the ability to align against any surface and maintain distance

and attitude facing the surface in front of the UAV, while also being able to perform vertical and lateral displacement.

Detailed descriptions of this plugin are provided in previous work [12]. In this work, the focus will be on the integration

with the system and modification to fully adapt it with respect to the original work. Thus, to include this behavior

within the system, the set of possible statuses is updated as follows:

S = {S ∪ {Align, Lock_To_Surface}} (6)

The interaction with the remote controller is depicted in Fig. 13. Unlike the previous implementation where the operator

triggered functions with a button on a table-like interface, in this case, the operator triggers the following functions

with a controller. We argue that this implementation contributes to a more natural experience and interaction with the

system compared to the previously published interaction as the operator does not have to switch to another control

paradigm. To align with the closest point p2 the UAV position pA , the operator simply presses the cross symbol on the

controller, setting BA = Align. This computes the yaw offset [to align with the closest point p2 and sends the updated

orientation to the position controller. During operation, the camera feedback highlights the closest point p2 as a circle

on the camera stream, with colors changing to reflect the angle offset [(green if |[| < 5, yellow between 5 ≤ |[| ≤ 15,

and red otherwise).

Fig. 13. Control interaction for align and translate

To change the status to BA = Lock_To_Surface, the operator initiates and maintains the status by holding the right

trigger on the controller. This automatically stores the current distance 3Cp2 to the closest point p2 at time C , and aligns

the UAV to the closest point as described earlier. Unlike the previous work, where translation was binary (either lateral

or vertical), the operator now has more fine-grained control. Specifically, both lateral (;2) and vertical (E2) displacement

are controlled with the thumbstick within the range of [−1, 1] allowing for precision and velocity control over UAV

movement. The new desired position is computed as follows. The current position pCA = [?CG , ?
C
~, ?

C
I] at time C is updated

as:

?C+1~ = ?C~ + X;2 (7)

?C+1I = ?CI + XE2 (8)

with X [m] representing the maximum translation. Then, given the new position pC+1, a new closest point pcC+1, its

distance 3C+1p2 , and normal ncC+1 are estimated using the current point cloud. The alignment angle [is retrieved and

Manuscript submitted to ACM

12 Franceschini et al.

used to adjust to the new position while the distance is corrected as follows:

?C+1G = ?CG + (3Cp2 − 3C+1p2)=C+1G (9)

The updated position pC+1A and orientation [are sent to the position controller. During this phase, the operator is kept

aware of the current alignment with a heatmap visualization of the UAV attitude with respect to the facing surface,

along with the previously described dot. A visualization of the operator’s camera feedback is reported in Fig. 14 while a

schematic representation of the transition between states is given in Fig. 15.

(a) Aligned (b) Not Aligned

Fig. 14. Alignment visualization under two different circumstances

Free Flight

Align

Lock_To_Surface

Fig. 15. Align and Lock to Surface state (transitions.

4.4 Rollercoaster

Piloting an aircraft is inherently challenging, especially when navigating in cluttered environments with limited

situational awareness. To address this issue, we developed an additional plugin, which was also presented in a distinct

study [14], aiming to establish an assistive navigation paradigm. In this method, the pilot controls the direction and

velocity of the UAV while a planner in the background is responsible for retrieving collision-free paths and navigating

towards a goal. This proposed interaction paradigm has been named Rollercoaster, and accordingly, the set of statuses

is updated as follows:

S = {S ∪ {Rollercoaster}} (10)

Within this plugin, the operator enables the Rollercoaster by pressing the left trigger and steers the direction of

the planner with the right thumbstick, as highlighted in Fig. 16. Pressing the left trigger changes the status to BA =

Manuscript submitted to ACM

AeroAssistant: A Modern and Flexible UAV Teleoperation Framework 13

Fig. 16. Control interaction for Rollercoaster

Rollercoaster , while adjusting the pressure on the trigger controls the Rollercoaster gain parameter A6 ∈ [0, 1], which

regulates the velocity of the UAV along the path.

(a) A6=1 (b) A6=0

Fig. 17. Rollercoaster Visualization under different A6

Releasing it will re-establish BA = Free_Flight. Meanwhile, with the right thumbstick, the operator defines the

Rollercoaster direction A3 ∈ [−1, 1] and controls a point p3 , which is at a distance : m from the current UAV position pA :

g = arccos(A3) (11)

with p3 :

?3G = ?8G + : cos(g) (12a)

?3~ = ?8~ + : sin(g) (12b)

?3I = ?8I (12c)

while the velocity is controlled with A6 , which linearly scales the maximum drone linear velocity vmax = {EG , E~, EI } to

compute the desired velocity v= along a normalized direction vector d = {3G , 3~, 3I } representing the direction towards

Manuscript submitted to ACM

14 Franceschini et al.

the next point in the plan:

v= = dA6v (13)

As previously described in Sec. 4.2, the same planner [27] along with the mapping presented in [44] are used due to

their capabilities of reliably and efficiently retrieving a safe path. During navigation, the operator is kept informed with

an enhanced visualization (Fig. 17), representing the retrieved path over the camera feedback where the current A6 is

represented as a green line over the path, and a 3D representation of the UAV moving in space.

A schematic representation of the transition between states is given in Fig. 18

Free Flight
Rollercoaster

Fig. 18. Rollercoaster state (transitions.

4.5 Point to Segment to Plan

Performing visual inspections of object surfaces can be inherently complex, especially when ensuring coverage and

alignment with the surfaces for accurate data collection. Therefore, we integrated the paper presented in [13] in form

of plugin. This plugin aims to leverage the latest advancements in promptable segmentation models, such as [23, 20,

52], to streamline the process of defining visible surfaces or objects that require inspection. Initially, the operator

defines an object for inspection by specifying points that indicate areas to include or exclude from the segmentation,

performed by the segmentation model. The model then proposes the segmented area to the operator, who can confirm

or refine the segmentation further. Once a satisfactory segmentation is achieved, the spatial representation of the object

is retrieved and used to extract a series of waypoints covering the entire surface. These waypoints are ordered from the

PathManager solving the travel salesman problem using the 2-opt [6] algorithm to obtain the shortest path. Given the

complexity of the interaction paradigm, multiple statuses are added:

S = {S ∪ {Aim_To_Surface,

Plan_To_Surface,

Auto_Move_To_Surface,

Manual_Move_To_Surface}}

(14)

These statuses are orchestrated with the controller interaction scheme represented in Fig. 19. Pressing the arrow down

switches the operator to BA = Aim_To_Surface, allowing the operator to define the points used for prompting the model

through the thumbstick, with the segmented area highlighted, as shown in Fig. 20a. Pressing the arrow down again

changes the status to BA = Plan_To_Surface, where a spatial representation of the segmented surface is extracted, and a

traversal plan at a distance @m facing the segmented surface is proposed and visualized, as in Fig. 20b.

Manuscript submitted to ACM

AeroAssistant: A Modern and Flexible UAV Teleoperation Framework 15

Fig. 19. Control interaction for Segment and Plan

(a) Visualization of the commanded prompt and visualization (b) Visualization of the proposed traversal plan

Fig. 20. Different visualization during prompting and planning

To initiatemovement, the operator presses the down arrow again, transitioning the status to BA = Auto_Move_To_Surface.

Subsequently, the UAV autonomously follows the list of waypoints as described in Section 4.2. Throughout the operation,

the operator is presented with an interface displaying the path completion (Figure 21a) and a 3D plan (Figure 21b).

(a) Camera interface (b) 3D interface

Fig. 21. Operator interfaces while moving along the plan

Since the operator may want to retain control or spend more time at a particular waypoint or inspect a certain

spot again, pressing the arrow down button again changes the state to BA = Manual_Move_To_Surface. At this point,

Manuscript submitted to ACM

16 Franceschini et al.

pressing the left and right arrows moves the UAV forward or backward along the list of waypoints, while pressing the

circle button returns to BA = Free_Flight. A clearer representation of the status changes is provided in Fig. 22.

Fig. 22. This scheme represents the transition between different states ((), with the downward arrow bu�on responsible for switching

between states and a circle used to regain control

5 CONCLUSION

In conclusion, the framework presented in this paper introduces and demostrates an innovative approach to enhance

UAV teleoperation by proposing a flexible architecture capable of blending familiar teleoperation interactions with

a series of shared-autonomy routines and augmented visualization. The AeroAssistant framework offers a versatile

foundation capable of accommodating various features. Throughout this paper, we have demonstrated the capabilities

of the framework by proposing a series of plugins that seamlessly integrate within the architecture. Each of these

plugins enhances the natural and intuitive interaction with the UAV, thereby enabling even non-expert users to navigate

through complex environment with ease. Future areas of interest include the integration of immersive visualization

devices such as head-mounted displays, the incorporation of multi-robot systems, and the implementation of additional

plugins to address various use cases. These may include search and rescue operations or aerial manipulation activities.

ACKNOWLEDGMENTS

Supported by the European Unions Horizon 2020 Research and Innovation Programme AERO-TRAIN under Grant

Agreement No. 953454 and by the Catalan Government through the funding grant ACCIÓ-Eurecat (Project TRAÇA –

EUTFS).

REFERENCES

[1] Jacopo Aleotti et al. “Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface”. In: Sensors 17.10

(2017). issn: 1424-8220. doi: 10.3390/s17102234. url: https://www.mdpi.com/1424-8220/17/10/2234.

[2] Raffaele Brilli et al. “Monocular Reactive Collision Avoidance Based on Force Fields for Enhancing the Teleoperation of MAVs”. In: 2021 20th

International Conference on Advanced Robotics (ICAR). 2021, pp. 91–98. doi: 10.1109/ICAR53236.2021.9659337.

[3] Jonathan Cacace, Alberto Finzi, and Vincenzo Lippiello. “A mixed-initiative control system for an Aerial Service Vehicle supported by force

feedback”. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2014, pp. 1230–1235. doi: 10.1109/IROS.2014.6942714.

[4] Linfeng Chen et al. “PinpointFly: An Egocentric Position-control Drone Interface using Mobile AR”. In: Proceedings of the 2021 CHI Conference

on Human Factors in Computing Systems. CHI ’21. Yokohama, Japan: Association for Computing Machinery, 2021. isbn: 9781450380966. doi:

10.1145/3411764.3445110. url: https://doi.org/10.1145/3411764.3445110.

[5] Intel Corporation. Intel® NUC. Accessed on 2023-11-16. 2023. url: https://www.intel.com/content/www/us/en/developer/overview.html.

Manuscript submitted to ACM

AeroAssistant: A Modern and Flexible UAV Teleoperation Framework 17

[6] G. A. Croes. “A Method for Solving Traveling-Salesman Problems”. In: Operations Research 6.6 (1958), pp. 791–812. issn: 0030364X, 15265463. url:

http://www.jstor.org/stable/167074 (visited on 08/16/2023).

[7] Martin Danelljan et al. “Adaptive Color Attributes for Real-Time Visual Tracking”. In: 2014 IEEE Conference on Computer Vision and Pattern

Recognition. 2014, pp. 1090–1097. doi: 10.1109/CVPR.2014.143.

[8] Florian Dietrich et al. “MAV tele-operation constrained on virtual surfaces for inspection of infrastructures”. In: 2020 25th IEEE International

Conference on Emerging Technologies and Factory Automation (ETFA). Vol. 1. 2020, pp. 1519–1525. doi: 10.1109/ETFA46521.2020.9212046.

[9] DJI. DJI Mobile SDK Documentation: Component Guide - Flight Controller. DJI. Accessed: 2024. url: https://developer.dji .com/mobile- sdk/

documentation/introduction/component-guide-flightController.html.

[10] Sony Interactive Entertainment. DualSense Wireless Controller. https://www.playstation.com/en-us/accessories/dualsense-wireless-controller/.

2021.

[11] Okan Erat et al. “Drone-Augmented Human Vision: Exocentric Control for Drones Exploring Hidden Areas”. In: IEEE Transactions on Visualization

and Computer Graphics 24.4 (2018), pp. 1437–1446. doi: 10.1109/TVCG.2018.2794058.

[12] Riccardo Franceschini, Matteo Fumagalli, and Julian Cayero Becerra. “Enhancing Human-Drone Interaction with Human-Meaningful Visual

Feedback and Shared-Control Strategies”. In: 2023 International Conference on Unmanned Aircraft Systems (ICUAS). 2023, pp. 1162–1167. doi:

10.1109/ICUAS57906.2023.10156190.

[13] Riccardo Franceschini, Matteo Javier Rodriguez Marquez Fumagalli, and Julian Cayero Becerra. “Point, Segment, and Inspect: Leveraging

Promptable Segmentation Models for Semi-Autonomous Aerial Inspection”. In: 2024 33rd IEEE International Conference on Robot and Human

Interactive Communication (RO-MAN). 2024, pp. 16–23. doi: -.

[14] Riccardo Franceschini et al. “Riding the Rollercoaster: Improving UAV Piloting Skills with Augmented Visualization and Collaborative Planning”.

In: 2024 International Conference on Unmanned Aircraft Systems (ICUAS). 2024, pp. 1093–1100. doi: 10.1109/ICUAS60882.2024.10556953.

[15] Boris Gromov et al. “Intuitive 3D Control of a Quadrotor in User Proximity with Pointing Gestures”. In: 2020 IEEE International Conference on

Robotics and Automation (ICRA). 2020, pp. 5964–5971. doi: 10.1109/ICRA40945.2020.9196654.

[16] Hooman Hedayati, Michael Walker, and Daniel Szafir. “Improving Collocated Robot Teleoperation with Augmented Reality”. In: 2018 13th

ACM/IEEE International Conference on Human-Robot Interaction (HRI). 2018, pp. 78–86.

[17] Pieter Hintjens. 0MQ - The Guide. 2011. url: http://zguide.zeromq.org/page:all.

[18] Baichuan Huang et al. “Flight, Camera, Action! Using Natural Language and Mixed Reality to Control a Drone”. In: 2019 International Conference

on Robotics and Automation (ICRA). 2019, pp. 6949–6956. doi: 10.1109/ICRA.2019.8794200.

[19] Christoforos Kanellakis et al. “Towards Visual Inspection of Wind Turbines: A Case of Visual Data Acquisition Using Autonomous Aerial Robots”.

In: IEEE Access 8 (2020). Conference Name: IEEE Access, pp. 181650–181661. issn: 2169-3536. doi: 10.1109/ACCESS.2020.3028195.

[20] Lei Ke et al. “Segment Anything in High Quality”. In: NeurIPS. 2023.

[21] Leonid Keselman et al. “Intel RealSense Stereoscopic Depth Cameras”. In: CoRR abs/1705.05548 (2017). arXiv: 1705.05548. url: http://arxiv.org/abs/

1705.05548.

[22] Dong-Hyun Kim, Yong-Guk Go, and Soo-Mi Choi. “An Aerial Mixed-Reality Environment for First-Person-View Drone Flying”. In: Applied

Sciences 10.16 (2020). issn: 2076-3417. doi: 10.3390/app10165436. url: https://www.mdpi.com/2076-3417/10/16/5436.

[23] Alexander Kirillov et al. Segment Anything. 2023. arXiv: 2304.02643 [cs.CV].

[24] Hung M. La et al. “Mechatronic Systems Design for an Autonomous Robotic System for High-Efficiency Bridge Deck Inspection and Evaluation”.

In: IEEE/ASME Transactions on Mechatronics 18.6 (2013), pp. 1655–1664. doi: 10.1109/TMECH.2013.2279751.

[25] LattePanda. LattePanda 3 Delta. https://www.lattepanda.com/lattepanda-3-delta. Accessed: 2024-04-04.

[26] Chuhao Liu and Shaojie Shen. “An Augmented Reality Interaction Interface for Autonomous Drone”. In: 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). 2020, pp. 11419–11424. doi: 10.1109/IROS45743.2020.9341037.

[27] Sikang Liu et al. “Planning Dynamically Feasible Trajectories for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments”. In: IEEE

Robotics and Automation Letters 2.3 (2017), pp. 1688–1695. doi: 10.1109/LRA.2017.2663526.

[28] Dylan P. Losey and Marcia K. O’Malley. “Trajectory Deformations From Physical Human–Robot Interaction”. In: IEEE Transactions on Robotics

34.1 (2018), pp. 126–138. doi: 10.1109/TRO.2017.2765335.

[29] Steven Macenski et al. “Robot Operating System 2: Design, architecture, and uses in the wild”. In: Science Robotics 7.66 (2022), eabm6074. doi:

10.1126/scirobotics.abm6074. url: https://www.science.org/doi/abs/10.1126/scirobotics.abm6074.

[30] Carlo Masone et al. “Semi-autonomous trajectory generation for mobile robots with integral haptic shared control”. In: 2014 IEEE International

Conference on Robotics and Automation (ICRA). 2014, pp. 6468–6475. doi: 10.1109/ICRA.2014.6907814.

[31] Carlo Masone et al. “Shared planning and control for mobile robots with integral haptic feedback”. In: The International Journal of Robotics

Research 37.11 (2018), pp. 1395–1420. doi: 10.1177/0278364918802006. eprint: https://doi.org/10.1177/0278364918802006. url: https://doi.org/10.

1177/0278364918802006.

[32] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. “PX4: A node-based multithreaded open source robotics framework for deeply embedded

platforms”. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). 2015, pp. 6235–6240. doi: 10.1109/ICRA.2015.7140074.

[33] ModalAI. VOXL2: A Powerful Companion Computer for Drones. https://www.modalai.com/products/voxl-2?variant=39914779836467. Accessed

2024-02-08.

Manuscript submitted to ACM

18 Franceschini et al.

[34] Marcin Odelga, Paolo Stegagno, and Heinrich H. Bülthoff. “Obstacle detection, tracking and avoidance for a teleoperated UAV”. In: 2016 IEEE

International Conference on Robotics and Automation (ICRA). 2016, pp. 2984–2990. doi: 10.1109/ICRA.2016.7487464.

[35] Marcin Odelga et al. “A Self-contained Teleoperated Quadrotor: On-Board State-Estimation and Indoor Obstacle Avoidance”. In: 2018 IEEE

International Conference on Robotics and Automation (ICRA). 2018, pp. 7840–7847. doi: 10.1109/ICRA.2018.8463185.

[36] Fatma Outay, Hanan Abdullah Mengash, and Muhammad Adnan. “Applications of unmanned aerial vehicle (UAV) in road safety, traffic and

highway infrastructure management: Recent advances and challenges”. In: Transportation Research Part A: Policy and Practice 141 (Nov. 2020),

pp. 116–129. issn: 09658564. doi: 10.1016/j.tra.2020.09.018. url: https://linkinghub.elsevier.com/retrieve/pii/S096585642030728X (visited on

07/06/2021).

[37] F.J. Perez-Grau et al. “Semi-autonomous teleoperation of UAVs in search and rescue scenarios”. In: 2017 International Conference on Unmanned

Aircraft Systems (ICUAS). 2017, pp. 1066–1074. doi: 10.1109/ICUAS.2017.7991349.

[38] Qualcomm Developer Network. Machine Vision SDK. Accessed: 2024-05-27. 2024. url: https://developer.qualcomm.com/software/machine-vision-

sdk.

[39] Morgan Quigley et al. “ROS: An open-source robot operating system”. In:Workshops at the IEEE International Conference on Robotics and Automation.

2009.

[40] Fran Real et al. “Unmanned aerial vehicle abstraction layer: An abstraction layer to operate unmanned aerial vehicles”. In: International Journal of

Advanced Robotic Systems 17.4 (2020), pp. 1–13. doi: 10.1177/1729881420925011. url: https://doi.org/10.1177/1729881420925011.

[41] P. J. Sanchez-Cuevas, G. Heredia, and A. Ollero. “Multirotor UAS for bridge inspection by contact using the ceiling effect”. In: 2017 International

Conference on Unmanned Aircraft Systems (ICUAS). 2017 International Conference on Unmanned Aircraft Systems (ICUAS). June 2017, pp. 767–774.

doi: 10.1109/ICUAS.2017.7991412.

[42] Oscar Bowen Schofield, Kasper Høj Lorenzen, and Emad Ebeid. “Cloud to Cable: A Drone Framework for Autonomous Power line Inspection”. In:

2020 23rd Euromicro Conference on Digital System Design (DSD). 2020, pp. 503–509. doi: 10.1109/DSD51259.2020.00085.

[43] Ryo Suzuki et al. “Augmented Reality and Robotics: A Survey and Taxonomy for AR-Enhanced Human-Robot Interaction and Robotic Interfaces”.

In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. CHI ’22. New Orleans, LA, USA: Association for Computing

Machinery, 2022. isbn: 9781450391573. doi: 10.1145/3491102.3517719. url: https://doi.org/10.1145/3491102.3517719.

[44] Jesus Tordesillas et al. “Real-Time Planning with Multi-Fidelity Models for Agile Flights in Unknown Environments”. In: 2019 International

Conference on Robotics and Automation (ICRA). 2019, pp. 725–731. doi: 10.1109/ICRA.2019.8794248.

[45] Diego Vaquero-Melchor and Ana M. Bernardos. “Alternative interaction techniques for drone-based mission definition: from desktop UI to

wearable AR”. In: Proceedings of the 18th International Conference on Mobile and Ubiquitous Multimedia. MUM ’19. Pisa, Italy: Association for

Computing Machinery, 2019. isbn: 9781450376242. doi: 10.1145/3365610.3368420. url: https://doi.org/10.1145/3365610.3368420.

[46] Karl D. von Ellenrieder et al. “Shared human–robot path following control of an unmanned ground vehicle”. In: Mechatronics 83 (2022), p. 102750.

issn: 0957-4158. doi: https : / / doi . org / 10 . 1016 / j .mechatronics . 2022 . 102750. url: https : / /www. sciencedirect . com/ science / article / pii /

S0957415822000083.

[47] Michael E. Walker, Hooman Hedayati, and Daniel Szafir. “Robot Teleoperation with Augmented Reality Virtual Surrogates”. In: 2019 14th ACM/IEEE

International Conference on Human-Robot Interaction (HRI). 2019, pp. 202–210. doi: 10.1109/HRI.2019.8673306.

[48] Qianhao Wang et al. “GPA-Teleoperation: Gaze Enhanced Perception-Aware Safe Assistive Aerial Teleoperation”. In: IEEE Robotics and Automation

Letters 7.2 (2022), pp. 5631–5638. doi: 10.1109/LRA.2022.3153898.

[49] Mohammad Kassem Zein et al. “Deep Learning and Mixed Reality to Autocomplete Teleoperation”. In: 2021 IEEE International Conference on

Robotics and Automation (ICRA). 2021, pp. 4523–4529. doi: 10.1109/ICRA48506.2021.9560887.

[50] Mohammad Kassem Zein et al. “Enhanced Teleoperation Using Autocomplete”. In: 2020 IEEE International Conference on Robotics and Automation

(ICRA). 2020, pp. 9178–9184. doi: 10.1109/ICRA40945.2020.9197140.

[51] Dawei Zhang, Guang Yang, and Rebecca P. Khurshid. “Haptic Teleoperation of UAVs Through Control Barrier Functions”. In: IEEE Transactions on

Haptics 13.1 (2020), pp. 109–115. doi: 10.1109/TOH.2020.2966485.

[52] Xu Zhao et al. Fast Segment Anything. 2023. arXiv: 2306.12156 [cs.CV].

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

Manuscript submitted to ACM

Bibliography
[1] OECD, Infrastructure to 2030. 2006.

[2] F. Outay, H. A. Mengash, and M. Adnan, “Applications of unmanned aerial
vehicle (UAV) in road safety, traffic and highway infrastructure management:
Recent advances and challenges,” vol. 141, pp. 116–129.

[3] H. M. La, R. S. Lim, B. B. Basily, N. Gucunski, J. Yi, A. Maher, F. A. Romero,
and H. Parvardeh, “Mechatronic systems design for an autonomous robotic
system for high-efficiency bridge deck inspection and evaluation,” IEEE/ASME
Transactions on Mechatronics, vol. 18, no. 6, pp. 1655–1664, 2013.

[4] P. J. Sanchez-Cuevas, G. Heredia, and A. Ollero, “Multirotor UAS for bridge
inspection by contact using the ceiling effect,” in 2017 International Conference
on Unmanned Aircraft Systems (ICUAS), pp. 767–774.

[5] O. B. Schofield, K. H. Lorenzen, and E. Ebeid, “Cloud to cable: A drone
framework for autonomous power line inspection,” in 2020 23rd Euromicro
Conference on Digital System Design (DSD), pp. 503–509, 2020.

[6] DJI, “Solar panel dji,”

[7] C. Kanellakis, E. Fresk, S. S. Mansouri, D. Kominiak, and G. Nikolakopoulos,
“Towards visual inspection of wind turbines: A case of visual data acquisition
using autonomous aerial robots,” vol. 8, pp. 181650–181661. Conference Name:
IEEE Access.

[8] S. Ljungblad, Y. Man, M. A. Baytaş, M. Gamboa, M. Obaid, and M. Fjeld,
“What matters in professional drone pilots’ practice? an interview study to
understand the complexity of their work and inform human-drone interaction
research,” in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–16, ACM.

[9] K. Okamura and S. Yamada, “Calibrating trust in human-drone cooperative
navigation,” in 2020 29th IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN), pp. 1274–1279. ISSN: 1944-9437.

[10] J. M. Beer, A. D. Fisk, and W. A. Rogers, “Toward a framework for levels of
robot autonomy in human-robot interaction,” vol. 3, no. 2, p. 74.

112 Bibliography

[11] C. Brooks and D. Szafir, “Visualization of intended assistance for acceptance
of shared control,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 11425–11430, 2020.

[12] I. D. Foundation, “Beyond ar vs. vr: What is the difference between ar vs.
mr vs. vr vs. xr?.” https://www.interaction-design.org/literature/
article/beyond-ar-vs-vr-what-is-the-difference-between-ar-vs-mr-
vs-vr-vs-xr, 2022.

[13] R. Suzuki, A. Karim, T. Xia, H. Hedayati, and N. Marquardt, “Augmented
reality and robotics: A survey and taxonomy for ar-enhanced human-robot
interaction and robotic interfaces,” in Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems, CHI ’22, (New York, NY, USA),
Association for Computing Machinery, 2022.

[14] M. Odelga, P. Stegagno, N. Kochanek, and H. H. Bülthoff, “A self-contained
teleoperated quadrotor: On-board state-estimation and indoor obstacle avoid-
ance,” in 2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 7840–7847, 2018.

[15] M. Odelga, P. Stegagno, and H. H. Bülthoff, “Obstacle detection, tracking and
avoidance for a teleoperated uav,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2984–2990, 2016.

[16] R. Brilli, M. Pozzi, F. Giorgetti, M. L. Fravolini, P. Valigi, D. Prattichizzo, and
G. Costante, “Monocular reactive collision avoidance based on force fields for
enhancing the teleoperation of mavs,” in 2021 20th International Conference
on Advanced Robotics (ICAR), pp. 91–98, 2021.

[17] F. Dietrich, J. Marzat, M. Sanfourche, S. Bertrand, A. Bernard-Brunel, and
A. Eudes, “Mav tele-operation constrained on virtual surfaces for inspection
of infrastructures,” in 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, pp. 1519–1525, 2020.

[18] C. Liu and S. Shen, “An augmented reality interaction interface for autonomous
drone,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 11419–11424, 2020.

[19] M. E. Walker, H. Hedayati, and D. Szafir, “Robot teleoperation with augmented
reality virtual surrogates,” in 2019 14th ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pp. 202–210, 2019.

[20] L. Chen, K. Takashima, K. Fujita, and Y. Kitamura, “Pinpointfly: An ego-
centric position-control drone interface using mobile ar,” in Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, (New
York, NY, USA), Association for Computing Machinery, 2021.

https://www.interaction-design.org/literature/article/beyond-ar-vs-vr-what-is-the-difference-between-ar-vs-mr-vs-vr-vs-xr
https://www.interaction-design.org/literature/article/beyond-ar-vs-vr-what-is-the-difference-between-ar-vs-mr-vs-vr-vs-xr
https://www.interaction-design.org/literature/article/beyond-ar-vs-vr-what-is-the-difference-between-ar-vs-mr-vs-vr-vs-xr

Bibliography 113

[21] D. Vaquero-Melchor and A. M. Bernardos, “Alternative interaction techniques
for drone-based mission definition: from desktop ui to wearable ar,” in Proceed-
ings of the 18th International Conference on Mobile and Ubiquitous Multimedia,
MUM ’19, (New York, NY, USA), Association for Computing Machinery, 2019.

[22] Y.-A. Chen, T.-Y. Wu, T. Chang, J. Y. Liu, Y.-C. Hsieh, L. Y. Hsu, M.-W. Hsu,
P. Taele, N.-H. Yu, and M. Y. Chen, “ARPilot: designing and investigating AR
shooting interfaces on mobile devices for drone videography,” in Proceedings of
the 20th International Conference on Human-Computer Interaction with Mobile
Devices and Services, pp. 1–8, ACM.

[23] B. Huang, D. Bayazit, D. Ullman, N. Gopalan, and S. Tellex, “Flight, camera,
action! using natural language and mixed reality to control a drone,” in 2019
International Conference on Robotics and Automation (ICRA), pp. 6949–6956,
2019.

[24] M. Riechmann, A. Kirsch, and M. Koenig, “Augmented reality for interactive
path planning in 3d,” in 2023 IEEE International Symposium on Mixed and
Augmented Reality Adjunct (ISMAR-Adjunct), pp. 561–566, 2023.

[25] J. Cacace, A. Finzi, and V. Lippiello, “A mixed-initiative control system for an
aerial service vehicle supported by force feedback,” in 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 1230–1235, 2014.

[26] C. Masone, P. R. Giordano, H. H. Bülthoff, and A. Franchi, “Semi-autonomous
trajectory generation for mobile robots with integral haptic shared control,”
in 2014 IEEE International Conference on Robotics and Automation (ICRA),
pp. 6468–6475, 2014.

[27] D. P. Losey and M. K. O’Malley, “Trajectory deformations from physical
human–robot interaction,” IEEE Transactions on Robotics, vol. 34, no. 1,
pp. 126–138, 2018.

[28] K. D. von Ellenrieder, S. C. Licht, R. Belotti, and H. C. Henninger, “Shared
human–robot path following control of an unmanned ground vehicle,” Mecha-
tronics, vol. 83, p. 102750, 2022.

[29] C. Masone, M. Mohammadi, P. R. Giordano, and A. Franchi, “Shared planning
and control for mobile robots with integral haptic feedback,” The International
Journal of Robotics Research, vol. 37, no. 11, pp. 1395–1420, 2018.

[30] D. Zhang, G. Yang, and R. P. Khurshid, “Haptic teleoperation of uavs through
control barrier functions,” IEEE Transactions on Haptics, vol. 13, no. 1,
pp. 109–115, 2020.

[31] M. K. Zein, A. Sidaoui, D. Asmar, and I. H. Elhajj, “Enhanced teleoperation
using autocomplete,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 9178–9184, 2020.

114 Bibliography

[32] M. K. Zein, M. Al Aawar, D. Asmar, and I. H. Elhajj, “Deep learning and mixed
reality to autocomplete teleoperation,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4523–4529, 2021.

[33] B. Ibrahim, M. H. Hussein, I. H. Elhajj, and D. Asmar, “Autocomplete of 3d
motions for uav teleoperation,” in 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 7825–7831, 2023.

[34] B. Gromov, J. Guzzi, L. M. Gambardella, and A. Giusti, “Intuitive 3d con-
trol of a quadrotor in user proximity with pointing gestures,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5964–5971,
2020.

[35] A. Menshchikov, D. Ermilov, I. Dranitsky, L. Kupchenko, M. Panov, M. Fe-
dorov, and A. Somov, “Data-driven body-machine interface for drone intuitive
control through voice and gestures,” in IECON 2019 - 45th Annual Confer-
ence of the IEEE Industrial Electronics Society, vol. 1, pp. 5602–5609. ISSN:
2577-1647.

[36] E. Peshkova, M. Hitz, and B. Kaufmann, “Natural interaction techniques for an
unmanned aerial vehicle system,” vol. 16, no. 1, pp. 34–42. Conference Name:
IEEE Pervasive Computing.

[37] J. DelPreto and D. Rus, “Plug-and-play gesture control using muscle and mo-
tion sensors,” in Proceedings of the 2020 ACM/IEEE International Conference
on Human-Robot Interaction, pp. 439–448, ACM.

[38] “The hover.” https://thehover.com/. Accessed: April 9, 2024.

[39] “Pixy.” https://www.pixy.com/. Accessed: April 9, 2024.

[40] Q. Wang, B. He, Z. Xun, C. Xu, and F. Gao, “Gpa-teleoperation: Gaze en-
hanced perception-aware safe assistive aerial teleoperation,” IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 5631–5638, 2022.

[41] O. Erat, W. A. Isop, D. Kalkofen, and D. Schmalstieg, “Drone-augmented
human vision: Exocentric control for drones exploring hidden areas,” IEEE
Transactions on Visualization and Computer Graphics, vol. 24, no. 4, pp. 1437–
1446, 2018.

[42] H. Hedayati, M. Walker, and D. Szafir, “Improving collocated robot teleopera-
tion with augmented reality,” in 2018 13th ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI), pp. 78–86, 2018.

[43] D.-H. Kim, Y.-G. Go, and S.-M. Choi, “An aerial mixed-reality environment
for first-person-view drone flying,” Applied Sciences, vol. 10, no. 16, 2020.

https://thehover.com/
https://www.pixy.com/

Bibliography 115

[44] M. Inoue, K. Takashima, K. Fujita, and Y. Kitamura, “Birdviewar:
Surroundings-aware remote drone piloting using an augmented third-person
perspective,” in Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems, CHI ’23, (New York, NY, USA), Association for Comput-
ing Machinery, 2023.

[45] M. Allenspach, T. Kötter, R. Bähnemann, M. Tognon, and R. Siegwart, “De-
sign and evaluation of a mixed reality-based human-robot interface for teleop-
eration of omnidirectional aerial vehicles,” in 2023 International Conference on
Unmanned Aircraft Systems (ICUAS), pp. 1168–1174, 2023.

[46] M. Allenspach, S. Laasch, N. Lawrance, M. Tognon, and R. Siegwart, “Mixed
reality human-robot interface to generate and visualize 6dof trajectories: Ap-
plication to omnidirectional aerial vehicles,” in 2023 International Conference
on Unmanned Aircraft Systems (ICUAS), pp. 395–400, 2023.

[47] G. A. Yashin, D. Trinitatova, R. T. Agishev, R. Ibrahimov, and D. Tsetserukou,
“AeroVR: Virtual reality-based teleoperation with tactile feedback for aerial
manipulation,”

[48] D. Kim and P. Y. Oh, “Aerial manipulation using a human-embodied drone
interface,” in 2022 IEEE International Conference on Advanced Robotics and
Its Social Impacts (ARSO), pp. 1–7, 2022.

[49] “DJI goggles 2.” https://www.dji.com/uk/goggles-2. Accessed: April 9,
2024.

[50] R. Franceschini, M. Fumagalli, and J. C. Becerra, “Learn to efficiently exploit
cost maps by combining rrt* with reinforcement learning,” in 2022 IEEE Inter-
national Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 251–
256, 2022.

[51] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” The International Journal of Robotics Research, vol. 30, no. 7,
pp. 846–894, 2011.

[52] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” CoRR, vol. abs/1707.06347, 2017.

[53] D. Devaurs, T. Siméon, and J. Cortés, “Optimal path planning in complex cost
spaces with sampling-based algorithms,” IEEE Transactions on Automation
Science and Engineering, vol. 13, no. 2, pp. 415–424, 2016.

[54] R. Franceschini, M. Fumagalli, and J. C. Becerra, “Enhancing human-drone in-
teraction with human-meaningful visual feedback and shared-control strategies,”
in 2023 International Conference on Unmanned Aircraft Systems (ICUAS),
pp. 1162–1167, 2023.

https://www.dji.com/uk/goggles-2

116 Bibliography

[55] R. Franceschini, M. Fumagalli, and J. C. Becerra, “Riding the rollercoaster:
easying UAV piloting experience with XR and continuous planning,” in XR-
ROB 2023 - Second International Workshop on ”Horizons of an Extended
Robotics Reality” @ IEEE/RSJ IROS 2023, 2023.

[56] R. Franceschini, J. R. Marquez, M. Fumagalli, and J. C. Becerra, “Riding
the rollercoaster: Improving uav piloting skills with augmented visualization
and collaborative planning,” in 2024 International Conference on Unmanned
Aircraft Systems (ICUAS), pp. 1093–1100, 2024.

[57] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor, and
V. Kumar, “Planning dynamically feasible trajectories for quadrotors using safe
flight corridors in 3-d complex environments,” IEEE Robotics and Automation
Letters, vol. 2, no. 3, pp. 1688–1695, 2017.

[58] J. Tordesillas, B. T. Lopez, J. Carter, J. Ware, and J. P. How, “Real-time
planning with multi-fidelity models for agile flights in unknown environments,”
in 2019 International Conference on Robotics and Automation (ICRA), pp. 725–
731, 2019.

[59] S. I. Entertainment, “Dualsense wireless controller.” https://www.
playstation.com/en-us/accessories/dualsense-wireless-controller/,
2021.

[60] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load index):
Results of empirical and theoretical research,” Advances in psychology, vol. 52,
pp. 139–183, 1988.

[61] ModalAI, “VOXL2: A Powerful Companion Computer for Drones.” https:
//www.modalai.com/products/voxl-2?variant=39914779836467, Accessed
2024-02-08.

[62] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based multithreaded
open source robotics framework for deeply embedded platforms,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6235–6240,
2015.

[63] L. Keselman, J. I. Woodfill, A. Grunnet-Jepsen, and A. Bhowmik, “Intel re-
alsense stereoscopic depth cameras,” CoRR, vol. abs/1705.05548, 2017.

[64] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao,
S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment
anything,” 2023.

[65] G. A. Croes, “A method for solving traveling-salesman problems,” Operations
Research, vol. 6, no. 6, pp. 791–812, 1958.

https://www.playstation.com/en-us/accessories/dualsense-wireless-controller/
https://www.playstation.com/en-us/accessories/dualsense-wireless-controller/
https://www.modalai.com/products/voxl-2?variant=39914779836467
https://www.modalai.com/products/voxl-2?variant=39914779836467

Bibliography 117

[66] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza, “Flightmare:
A flexible quadrotor simulator,” in Conference on Robot Learning, 2020.

[67] L. Ke, M. Ye, M. Danelljan, Y. Liu, Y.-W. Tai, C.-K. Tang, and F. Yu, “Segment
anything in high quality,” in NeurIPS, 2023.

[68] X. Zhao, W. Ding, Y. An, Y. Du, T. Yu, M. Li, M. Tang, and J. Wang, “Fast
segment anything,” 2023.

[69] R. Franceschini, M. Fumagalli, and J. C. Becerra, “Aeroassistant: a modern
and flexible teleoperation framework,” (New York, NY, USA), Association for
Computing Machinery, 2024.

[70] F. Real, A. Torres-González, P. R. Soria, J. Capitán, and A. Ollero, “Unmanned
aerial vehicle abstraction layer: An abstraction layer to operate unmanned
aerial vehicles,” International Journal of Advanced Robotic Systems, vol. 17,
no. 4, pp. 1–13, 2020.

[71] LattePanda, “LattePanda 3 Delta.” https://www.lattepanda.com/
lattepanda-3-delta, Accessed: 2024-04-04.

[72] I. Corporation, “Intel® nuc,” 2023. Accessed on 2023-11-16.

[73] Q. Zhou, J. Park, and V. Koltun, “Open3d: A modern library for 3d data
processing,” CoRR, vol. abs/1801.09847, 2018.

[74] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

[75] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “ROS: An open-source robot operating system,” in Workshops
at the IEEE International Conference on Robotics and Automation, 2009.

[76] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot op-
erating system 2: Design, architecture, and uses in the wild,” Science Robotics,
vol. 7, no. 66, p. eabm6074, 2022.

[77] P. Hintjens, “0mq - the guide,” 2011.

[78] M. Danelljan, F. S. Khan, M. Felsberg, and J. Van De Weijer, “Adaptive color
attributes for real-time visual tracking,” in 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1090–1097, 2014.

[79] R. Franceschini, M. Fumagalli, and J. C. Becerra, “Point, segment, and in-
spect: Leveraging promptable segmentation models for semi-autonomous aerial
inspection,” in 2024 32nd IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN), pp. 16–23, 2024.

https://www.lattepanda.com/lattepanda-3-delta
https://www.lattepanda.com/lattepanda-3-delta

118 Bibliography

[80] Unity Technologies, “Unity AR Foundation Manual.” https://docs.unity3d.
com/Packages/com.unity.xr.arfoundation@6.0/manual/index.html, 2024.

[81] PTC, “Vuforia Engine Documentation.” https://www.ptc.com/en/products/
vuforia/vuforia-engine/, 2024.

[82] Google, “Google ARCore Documentation.” https://developers.google.com/
ar, 2024.

[83] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.
Cambridge University Press, 2 ed., 2004.

[84] C. Staff, “Camera models and their applications,” 2023. Accessed: 2024-05-14.

[85] “NVIDIA Jetson Orin.” https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-orin/, Accessed: 2024. Accessed on:
2024-04-23.

[86] “Raspberry Pi 4 Model B.” https://www.raspberrypi.com/products/
raspberry-pi-4-model-b/, Accessed: 2024. Accessed on: 2024-04-23.

[87] NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 10.2.89,” 2020.

[88] “Qualcomm QRB5165.” https://www.qualcomm.com/products/internet-
of-things/industrial/industrial-automation/qrb5165#Overview, Ac-
cessed: 2024. Accessed on: 2024-04-23.

[89] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[90] K. Wu, J. Zhang, H. Peng, M. Liu, B. Xiao, J. Fu, and L. Yuan, “Tinyvit: Fast
pretraining distillation for small vision transformers,” 2022.

[91] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance segmen-
tation,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), October 2019.

[92] C. White, M. Safari, R. Sukthanker, B. Ru, T. Elsken, A. Zela, D. Dey, and
F. Hutter, “Neural architecture search: Insights from 1000 papers,” arXiv
preprint arXiv:2301.08727, 2023.

[93] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,”
CoRR, vol. abs/1611.01578, 2016.

[94] E. Cereda, L. Crupi, M. Risso, A. Burrello, L. Benini, A. Giusti,
D. Jahier Pagliari, and D. Palossi, “Deep neural network architecture search
for accurate visual pose estimation aboard nano-uavs,” in 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 6065–6071, 2023.

https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@6.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@6.0/manual/index.html
https://www.ptc.com/en/products/vuforia/vuforia-engine/
https://www.ptc.com/en/products/vuforia/vuforia-engine/
https://developers.google.com/ar
https://developers.google.com/ar
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.qualcomm.com/products/internet-of-things/industrial/industrial-automation/qrb5165#Overview
https://www.qualcomm.com/products/internet-of-things/industrial/industrial-automation/qrb5165#Overview

Bibliography 119

[95] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam, and
D. Kalenichenko, “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” CoRR, vol. abs/1712.05877, 2017.

[96] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep learning
library,” CoRR, vol. abs/1912.01703, 2019.

[97] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke,
Y. Yu, and X. Zhang, “Tensorflow: A system for large-scale machine learning,”
CoRR, vol. abs/1605.08695, 2016.

[98] J. Bai, F. Lu, K. Zhang, et al., “Onnx: Open neural network exchange.” https:
//github.com/onnx/onnx, 2019.

[99] “PyTorch Executorch.” https://pytorch.org/executorch-overview, Ac-
cessed: 2024. Accessed on: 2024-04-23.

[100] “TensorFlow Lite.” https://www.tensorflow.org/lite, Accessed: 2024. Ac-
cessed on: 2024-04-23.

[101] PINTO0309, “onnx2tf: Convert ONNX to TensorFlow.” https://github.com/
PINTO0309/onnx2tf, 2024.

[102] T. D. Science, “Non-maximum suppression (nms),” Accessed: 2024. Accessed
on: 2024-04-23.

[103] Livox Technology Co., Ltd., “Livox mid-360,” Accessed 2024. Accessed on 13th
May 2024.

[104] W. Xu and F. Zhang, “Fast-lio: A fast, robust lidar-inertial odometry pack-
age by tightly-coupled iterated kalman filter,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 3317–3324, 2021.

[105] Meta Platforms, Inc., “Quest 3.” https://www.meta.com/quest/quest-3/,
2024.

[106] Apple Inc., “Apple Vision Pro.” https://www.apple.com/apple-vision-pro/,
2024.

[107] Unity Technologies, “Unity,” 2023. Game development platform.

[108] M. Divband Soorati, J. Clark, J. Ghofrani, D. Tarapore, and S. D. Ramchurn,
“Designing a user-centered interaction interface for human–swarm teaming,”
Drones, vol. 5, no. 4, 2021.

https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://pytorch.org/executorch-overview
https://www.tensorflow.org/lite
https://github.com/PINTO0309/onnx2tf
https://github.com/PINTO0309/onnx2tf
https://www.meta.com/quest/quest-3/
https://www.apple.com/apple-vision-pro/

120 Bibliography

[109] M. Macchini, L. De Matteïs, F. Schiano, and D. Floreano, “Personalized human-
swarm interaction through hand motion,” IEEE Robotics and Automation Let-
ters, vol. 6, no. 4, pp. 8341–8348, 2021.

[110] M. Pavliv, F. Schiano, C. Reardon, D. Floreano, and G. Loianno, “Tracking
and relative localization of drone swarms with a vision-based headset,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 1455–1462, 2021.

[111] Pico Interactive, “Pico XR.” https://www.picoxr.com/global, 2024.

[112] “Varjo XR-4.” https://varjo.com/products/xr-4/, Accessed: 2024. Ac-
cessed on: 2024-04-23.

[113] HTC Corporation, “VIVE.” https://www.vive.com/us/, 2024.

[114] A. Ollero, M. Tognon, A. Suarez, D. Lee, and A. Franchi, “Past, present, and
future of aerial robotic manipulators,” IEEE Transactions on Robotics, vol. 38,
no. 1, pp. 626–645, 2022.

[115] R. Dautzenberg, T. Küster, T. Mathis, Y. Roth, C. Steinauer, G. Käppeli,
J. Santen, A. Arranhado, F. Biffar, T. Kötter, C. Lanegger, M. Allenspach,
R. Siegwart, and R. Bähnemann, “A perching and tilting aerial robot for pre-
cise and versatile power tool work on vertical walls,” in 2023 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 1094–1101,
2023.

[116] J. Cacace, G. A. Fontanelli, and V. Lippiello, “A novel hybrid aerial-ground ma-
nipulator for pipeline inspection tasks,” in 2021 Aerial Robotic Systems Physi-
cally Interacting with the Environment (AIRPHARO), pp. 1–6, 2021.

[117] A. Suarez, G. Heredia, and A. Ollero, “Design of an anthropomorphic, compli-
ant, and lightweight dual arm for aerial manipulation,” IEEE Access, vol. 6,
pp. 29173–29189, 2018.

[118] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton,
L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and
R. Lowe, “Training language models to follow instructions with human feed-
back,” 2022.

[119] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave,
and G. Lample, “Llama: Open and efficient foundation language models,” 2023.

[120] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las
Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A.
Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed,
“Mistral 7b,” 2023.

https://www.picoxr.com/global
https://varjo.com/products/xr-4/
https://www.vive.com/us/

Bibliography 121

[121] G. Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalk-
wyk, A. M. Dai, A. Hauth, K. Millican, D. Silver, M. Johnson, I. Antonoglou,
J. Schrittwieser, A. Glaese, J. Chen, E. Pitler, T. Lillicrap, A. Lazaridou,
O. Firat, J. Molloy, M. Isard, P. R. Barham, T. Hennigan, B. Lee, F. Vi-
ola, M. Reynolds, Y. Xu, R. Doherty, E. Collins, C. Meyer, E. Rutherford,
E. Moreira, K. Ayoub, M. Goel, J. Krawczyk, C. Du, E. Chi, H.-T. Cheng,
E. Ni, P. Shah, P. Kane, B. Chan, M. Faruqui, A. Severyn, H. Lin, Y. Li,
Y. Cheng, A. Ittycheriah, M. Mahdieh, M. Chen, P. Sun, D. Tran, S. Bagri,
B. Lakshminarayanan, J. Liu, A. Orban, F. Güra, H. Zhou, X. Song, A. Boffy,
H. Ganapathy, S. Zheng, H. Choe, Ágoston Weisz, T. Zhu, Y. Lu, S. Gopal,
J. Kahn, M. Kula, J. Pitman, R. Shah, E. Taropa, M. A. Merey, M. Baeuml,
Z. Chen, L. E. Shafey, Y. Zhang, O. Sercinoglu, G. Tucker, E. Piqueras,
M. Krikun, I. Barr, N. Savinov, I. Danihelka, B. Roelofs, A. White, A. An-
dreassen, T. von Glehn, L. Yagati, M. Kazemi, L. Gonzalez, M. Khalman,
J. Sygnowski, A. Frechette, C. Smith, L. Culp, L. Proleev, Y. Luan, X. Chen,
J. Lottes, N. Schucher, F. Lebron, A. Rrustemi, N. Clay, P. Crone, T. Kocisky,
J. Zhao, B. Perz, D. Yu, H. Howard, A. Bloniarz, J. W. Rae, H. Lu, L. Sifre,
M. Maggioni, F. Alcober, D. Garrette, M. Barnes, S. Thakoor, J. Austin,
G. Barth-Maron, W. Wong, R. Joshi, R. Chaabouni, D. Fatiha, A. Ahuja, G. S.
Tomar, E. Senter, M. Chadwick, I. Kornakov, N. Attaluri, I. Iturrate, R. Liu,
Y. Li, S. Cogan, J. Chen, C. Jia, C. Gu, Q. Zhang, J. Grimstad, A. J. Hart-
man, X. Garcia, T. S. Pillai, J. Devlin, M. Laskin, D. de Las Casas, D. Valter,
C. Tao, L. Blanco, A. P. Badia, D. Reitter, M. Chen, J. Brennan, C. Rivera,
S. Brin, S. Iqbal, G. Surita, J. Labanowski, A. Rao, S. Winkler, E. Parisotto,
Y. Gu, K. Olszewska, R. Addanki, A. Miech, A. Louis, D. Teplyashin, G. Brown,
E. Catt, J. Balaguer, J. Xiang, P. Wang, Z. Ashwood, A. Briukhov, A. Webson,
S. Ganapathy, S. Sanghavi, A. Kannan, M.-W. Chang, A. Stjerngren, J. Djo-
longa, Y. Sun, A. Bapna, M. Aitchison, P. Pejman, H. Michalewski, T. Yu,
C. Wang, J. Love, J. Ahn, D. Bloxwich, K. Han, P. Humphreys, T. Sellam,
J. Bradbury, V. Godbole, S. Samangooei, B. Damoc, A. Kaskasoli, S. M. R.
Arnold, V. Vasudevan, S. Agrawal, J. Riesa, D. Lepikhin, R. Tanburn, S. Srini-
vasan, H. Lim, S. Hodkinson, P. Shyam, J. Ferret, S. Hand, A. Garg, T. L.
Paine, J. Li, Y. Li, M. Giang, A. Neitz, Z. Abbas, S. York, M. Reid, E. Cole,
A. Chowdhery, D. Das, D. Rogozińska, V. Nikolaev, P. Sprechmann, Z. Nado,
L. Zilka, F. Prost, L. He, M. Monteiro, G. Mishra, C. Welty, J. Newlan, D. Jia,
M. Allamanis, C. H. Hu, R. de Liedekerke, J. Gilmer, C. Saroufim, S. Rijh-
wani, S. Hou, D. Shrivastava, A. Baddepudi, A. Goldin, A. Ozturel, A. Cassirer,
Y. Xu, D. Sohn, D. Sachan, R. K. Amplayo, C. Swanson, D. Petrova, S. Narayan,
A. Guez, S. Brahma, J. Landon, M. Patel, R. Zhao, K. Villela, L. Wang,
W. Jia, M. Rahtz, M. Giménez, L. Yeung, J. Keeling, P. Georgiev, D. Mincu,
B. Wu, S. Haykal, R. Saputro, K. Vodrahalli, J. Qin, Z. Cankara, A. Sharma,
N. Fernando, W. Hawkins, B. Neyshabur, S. Kim, A. Hutter, P. Agrawal,
A. Castro-Ros, G. van den Driessche, T. Wang, F. Yang, S. yiin Chang, P. Ko-
marek, R. McIlroy, M. Lučić, G. Zhang, W. Farhan, M. Sharman, P. Natsev,

122 Bibliography

P. Michel, Y. Bansal, S. Qiao, K. Cao, S. Shakeri, C. Butterfield, J. Chung,
P. K. Rubenstein, S. Agrawal, A. Mensch, K. Soparkar, K. Lenc, T. Chung,
A. Pope, L. Maggiore, J. Kay, P. Jhakra, S. Wang, J. Maynez, M. Phuong,
T. Tobin, A. Tacchetti, M. Trebacz, K. Robinson, Y. Katariya, S. Riedel, P. Bai-
ley, K. Xiao, N. Ghelani, L. Aroyo, A. Slone, N. Houlsby, X. Xiong, Z. Yang,
E. Gribovskaya, J. Adler, M. Wirth, L. Lee, M. Li, T. Kagohara, J. Pavagadhi,
S. Bridgers, A. Bortsova, S. Ghemawat, Z. Ahmed, T. Liu, R. Powell, V. Bolina,
M. Iinuma, P. Zablotskaia, J. Besley, D.-W. Chung, T. Dozat, R. Comanescu,
X. Si, J. Greer, G. Su, M. Polacek, R. L. Kaufman, S. Tokumine, H. Hu,
E. Buchatskaya, Y. Miao, M. Elhawaty, A. Siddhant, N. Tomasev, J. Xing,
C. Greer, H. Miller, S. Ashraf, A. Roy, Z. Zhang, A. Ma, A. Filos, M. Besta,
R. Blevins, T. Klimenko, C.-K. Yeh, S. Changpinyo, J. Mu, O. Chang, M. Pa-
jarskas, C. Muir, V. Cohen, C. L. Lan, K. Haridasan, A. Marathe, S. Hansen,
S. Douglas, R. Samuel, M. Wang, S. Austin, C. Lan, J. Jiang, J. Chiu, J. A.
Lorenzo, L. L. Sjösund, S. Cevey, Z. Gleicher, T. Avrahami, A. Boral, H. Srini-
vasan, V. Selo, R. May, K. Aisopos, L. Hussenot, L. B. Soares, K. Baumli, M. B.
Chang, A. Recasens, B. Caine, A. Pritzel, F. Pavetic, F. Pardo, A. Gergely,
J. Frye, V. Ramasesh, D. Horgan, K. Badola, N. Kassner, S. Roy, E. Dyer, V. C.
Campos, A. Tomala, Y. Tang, D. E. Badawy, E. White, B. Mustafa, O. Lang,
A. Jindal, S. Vikram, Z. Gong, S. Caelles, R. Hemsley, G. Thornton, F. Feng,
W. Stokowiec, C. Zheng, P. Thacker, Çağlar Ünlü, Z. Zhang, M. Saleh, J. Svens-
son, M. Bileschi, P. Patil, A. Anand, R. Ring, K. Tsihlas, A. Vezer, M. Selvi,
T. Shevlane, M. Rodriguez, T. Kwiatkowski, S. Daruki, K. Rong, A. Dafoe,
N. FitzGerald, K. Gu-Lemberg, M. Khan, L. A. Hendricks, M. Pellat, V. Fein-
berg, J. Cobon-Kerr, T. Sainath, M. Rauh, S. H. Hashemi, R. Ives, Y. Hasson,
E. Noland, Y. Cao, N. Byrd, L. Hou, Q. Wang, T. Sottiaux, M. Paganini, J.-B.
Lespiau, A. Moufarek, S. Hassan, K. Shivakumar, J. van Amersfoort, A. Mand-
hane, P. Joshi, A. Goyal, M. Tung, A. Brock, H. Sheahan, V. Misra, C. Li,
N. Rakićević, M. Dehghani, F. Liu, S. Mittal, J. Oh, S. Noury, E. Sezener,
F. Huot, M. Lamm, N. D. Cao, C. Chen, S. Mudgal, R. Stella, K. Brooks,
G. Vasudevan, C. Liu, M. Chain, N. Melinkeri, A. Cohen, V. Wang, K. Sey-
more, S. Zubkov, R. Goel, S. Yue, S. Krishnakumaran, B. Albert, N. Hurley,
M. Sano, A. Mohananey, J. Joughin, E. Filonov, T. Kępa, Y. Eldawy, J. Lim,
R. Rishi, S. Badiezadegan, T. Bos, J. Chang, S. Jain, S. G. S. Padmanabhan,
S. Puttagunta, K. Krishna, L. Baker, N. Kalb, V. Bedapudi, A. Kurzrok, S. Lei,
A. Yu, O. Litvin, X. Zhou, Z. Wu, S. Sobell, A. Siciliano, A. Papir, R. Neale,
J. Bragagnolo, T. Toor, T. Chen, V. Anklin, F. Wang, R. Feng, M. Gholami,
K. Ling, L. Liu, J. Walter, H. Moghaddam, A. Kishore, J. Adamek, T. Mer-
cado, J. Mallinson, S. Wandekar, S. Cagle, E. Ofek, G. Garrido, C. Lombriser,
M. Mukha, B. Sun, H. R. Mohammad, J. Matak, Y. Qian, V. Peswani, P. Janus,
Q. Yuan, L. Schelin, O. David, A. Garg, Y. He, O. Duzhyi, A. Älgmyr, T. Lottaz,
Q. Li, V. Yadav, L. Xu, A. Chinien, R. Shivanna, A. Chuklin, J. Li, C. Spadine,
T. Wolfe, K. Mohamed, S. Das, Z. Dai, K. He, D. von Dincklage, S. Upadhyay,
A. Maurya, L. Chi, S. Krause, K. Salama, P. G. Rabinovitch, P. K. R. M, A. Sel-

Bibliography 123

van, M. Dektiarev, G. Ghiasi, E. Guven, H. Gupta, B. Liu, D. Sharma, I. H.
Shtacher, S. Paul, O. Akerlund, F.-X. Aubet, T. Huang, C. Zhu, E. Zhu, E. Teix-
eira, M. Fritze, F. Bertolini, L.-E. Marinescu, M. Bölle, D. Paulus, K. Gupta,
T. Latkar, M. Chang, J. Sanders, R. Wilson, X. Wu, Y.-X. Tan, L. N. Thiet,
T. Doshi, S. Lall, S. Mishra, W. Chen, T. Luong, S. Benjamin, J. Lee, E. An-
drejczuk, D. Rabiej, V. Ranjan, K. Styrc, P. Yin, J. Simon, M. R. Harriott,
M. Bansal, A. Robsky, G. Bacon, D. Greene, D. Mirylenka, C. Zhou, O. Sarvana,
A. Goyal, S. Andermatt, P. Siegler, B. Horn, A. Israel, F. Pongetti, C.-W. L.
Chen, M. Selvatici, P. Silva, K. Wang, J. Tolins, K. Guu, R. Yogev, X. Cai,
A. Agostini, M. Shah, H. Nguyen, N. ฀. Donnaile, S. Pereira, L. Friso, A. Stam-
bler, A. Kurzrok, C. Kuang, Y. Romanikhin, M. Geller, Z. Yan, K. Jang, C.-C.
Lee, W. Fica, E. Malmi, Q. Tan, D. Banica, D. Balle, R. Pham, Y. Huang,
D. Avram, H. Shi, J. Singh, C. Hidey, N. Ahuja, P. Saxena, D. Dooley,
S. P. Potharaju, E. O’Neill, A. Gokulchandran, R. Foley, K. Zhao, M. Dusen-
berry, Y. Liu, P. Mehta, R. Kotikalapudi, C. Safranek-Shrader, A. Goodman,
J. Kessinger, E. Globen, P. Kolhar, C. Gorgolewski, A. Ibrahim, Y. Song,
A. Eichenbaum, T. Brovelli, S. Potluri, P. Lahoti, C. Baetu, A. Ghorbani,
C. Chen, A. Crawford, S. Pal, M. Sridhar, P. Gurita, A. Mujika, I. Petrovski,
P.-L. Cedoz, C. Li, S. Chen, N. D. Santo, S. Goyal, J. Punjabi, K. Kappagan-
thu, C. Kwak, P. LV, S. Velury, H. Choudhury, J. Hall, P. Shah, R. Figueira,
M. Thomas, M. Lu, T. Zhou, C. Kumar, T. Jurdi, S. Chikkerur, Y. Ma, A. Yu,
S. Kwak, V. Ähdel, S. Rajayogam, T. Choma, F. Liu, A. Barua, C. Ji, J. H.
Park, V. Hellendoorn, A. Bailey, T. Bilal, H. Zhou, M. Khatir, C. Sutton,
W. Rzadkowski, F. Macintosh, K. Shagin, P. Medina, C. Liang, J. Zhou,
P. Shah, Y. Bi, A. Dankovics, S. Banga, S. Lehmann, M. Bredesen, Z. Lin,
J. E. Hoffmann, J. Lai, R. Chung, K. Yang, N. Balani, A. Bražinskas, A. Sozan-
schi, M. Hayes, H. F. Alcalde, P. Makarov, W. Chen, A. Stella, L. Snijders,
M. Mandl, A. Kärrman, P. Nowak, X. Wu, A. Dyck, K. Vaidyanathan, R. R,
J. Mallet, M. Rudominer, E. Johnston, S. Mittal, A. Udathu, J. Christensen,
V. Verma, Z. Irving, A. Santucci, G. Elsayed, E. Davoodi, M. Georgiev, I. Ten-
ney, N. Hua, G. Cideron, E. Leurent, M. Alnahlawi, I. Georgescu, N. Wei,
I. Zheng, D. Scandinaro, H. Jiang, J. Snoek, M. Sundararajan, X. Wang, Z. On-
tiveros, I. Karo, J. Cole, V. Rajashekhar, L. Tumeh, E. Ben-David, R. Jain,
J. Uesato, R. Datta, O. Bunyan, S. Wu, J. Zhang, P. Stanczyk, Y. Zhang,
D. Steiner, S. Naskar, M. Azzam, M. Johnson, A. Paszke, C.-C. Chiu, J. S.
Elias, A. Mohiuddin, F. Muhammad, J. Miao, A. Lee, N. Vieillard, J. Park,
J. Zhang, J. Stanway, D. Garmon, A. Karmarkar, Z. Dong, J. Lee, A. Ku-
mar, L. Zhou, J. Evens, W. Isaac, G. Irving, E. Loper, M. Fink, I. Arkatkar,
N. Chen, I. Shafran, I. Petrychenko, Z. Chen, J. Jia, A. Levskaya, Z. Zhu,
P. Grabowski, Y. Mao, A. Magni, K. Yao, J. Snaider, N. Casagrande, E. Palmer,
P. Suganthan, A. Castaño, I. Giannoumis, W. Kim, M. Rybiński, A. Sreevatsa,
J. Prendki, D. Soergel, A. Goedeckemeyer, W. Gierke, M. Jafari, M. Gaba,
J. Wiesner, D. G. Wright, Y. Wei, H. Vashisht, Y. Kulizhskaya, J. Hoover,
M. Le, L. Li, C. Iwuanyanwu, L. Liu, K. Ramirez, A. Khorlin, A. Cui, T. LIN,

124 Bibliography

M. Wu, R. Aguilar, K. Pallo, A. Chakladar, G. Perng, E. A. Abellan, M. Zhang,
I. Dasgupta, N. Kushman, I. Penchev, A. Repina, X. Wu, T. van der Weide,
P. Ponnapalli, C. Kaplan, J. Simsa, S. Li, O. Dousse, F. Yang, J. Piper, N. Ie,
R. Pasumarthi, N. Lintz, A. Vijayakumar, D. Andor, P. Valenzuela, M. Lui,
C. Paduraru, D. Peng, K. Lee, S. Zhang, S. Greene, D. D. Nguyen, P. Kury-
lowicz, C. Hardin, L. Dixon, L. Janzer, K. Choo, Z. Feng, B. Zhang, A. Sing-
hal, D. Du, D. McKinnon, N. Antropova, T. Bolukbasi, O. Keller, D. Reid,
D. Finchelstein, M. A. Raad, R. Crocker, P. Hawkins, R. Dadashi, C. Gaffney,
K. Franko, A. Bulanova, R. Leblond, S. Chung, H. Askham, L. C. Cobo, K. Xu,
F. Fischer, J. Xu, C. Sorokin, C. Alberti, C.-C. Lin, C. Evans, A. Dimitriev,
H. Forbes, D. Banarse, Z. Tung, M. Omernick, C. Bishop, R. Sterneck, R. Jain,
J. Xia, E. Amid, F. Piccinno, X. Wang, P. Banzal, D. J. Mankowitz, A. Polozov,
V. Krakovna, S. Brown, M. Bateni, D. Duan, V. Firoiu, M. Thotakuri, T. Natan,
M. Geist, S. tan Girgin, H. Li, J. Ye, O. Roval, R. Tojo, M. Kwong, J. Lee-Thorp,
C. Yew, D. Sinopalnikov, S. Ramos, J. Mellor, A. Sharma, K. Wu, D. Miller,
N. Sonnerat, D. Vnukov, R. Greig, J. Beattie, E. Caveness, L. Bai, J. Eisensch-
los, A. Korchemniy, T. Tsai, M. Jasarevic, W. Kong, P. Dao, Z. Zheng, F. Liu,
F. Yang, R. Zhu, T. H. Teh, J. Sanmiya, E. Gladchenko, N. Trdin, D. Toyama,
E. Rosen, S. Tavakkol, L. Xue, C. Elkind, O. Woodman, J. Carpenter, G. Pa-
pamakarios, R. Kemp, S. Kafle, T. Grunina, R. Sinha, A. Talbert, D. Wu,
D. Owusu-Afriyie, C. Du, C. Thornton, J. Pont-Tuset, P. Narayana, J. Li,
S. Fatehi, J. Wieting, O. Ajmeri, B. Uria, Y. Ko, L. Knight, A. Héliou, N. Niu,
S. Gu, C. Pang, Y. Li, N. Levine, A. Stolovich, R. Santamaria-Fernandez,
S. Goenka, W. Yustalim, R. Strudel, A. Elqursh, C. Deck, H. Lee, Z. Li,
K. Levin, R. Hoffmann, D. Holtmann-Rice, O. Bachem, S. Arora, C. Koh, S. H.
Yeganeh, S. Põder, M. Tariq, Y. Sun, L. Ionita, M. Seyedhosseini, P. Tafti,
Z. Liu, A. Gulati, J. Liu, X. Ye, B. Chrzaszcz, L. Wang, N. Sethi, T. Li,
B. Brown, S. Singh, W. Fan, A. Parisi, J. Stanton, V. Koverkathu, C. A.
Choquette-Choo, Y. Li, T. Lu, A. Ittycheriah, P. Shroff, M. Varadarajan, S. Ba-
hargam, R. Willoughby, D. Gaddy, G. Desjardins, M. Cornero, B. Robenek,
B. Mittal, B. Albrecht, A. Shenoy, F. Moiseev, H. Jacobsson, A. Ghaffarkhah,
M. Rivière, A. Walton, C. Crepy, A. Parrish, Z. Zhou, C. Farabet, C. Rade-
baugh, P. Srinivasan, C. van der Salm, A. Fidjeland, S. Scellato, E. Latorre-
Chimoto, H. Klimczak-Plucińska, D. Bridson, D. de Cesare, T. Hudson, P. Men-
dolicchio, L. Walker, A. Morris, M. Mauger, A. Guseynov, A. Reid, S. Odoom,
L. Loher, V. Cotruta, M. Yenugula, D. Grewe, A. Petrushkina, T. Duerig,
A. Sanchez, S. Yadlowsky, A. Shen, A. Globerson, L. Webb, S. Dua, D. Li,
S. Bhupatiraju, D. Hurt, H. Qureshi, A. Agarwal, T. Shani, M. Eyal, A. Khare,
S. R. Belle, L. Wang, C. Tekur, M. S. Kale, J. Wei, R. Sang, B. Saeta, T. Liechty,
Y. Sun, Y. Zhao, S. Lee, P. Nayak, D. Fritz, M. R. Vuyyuru, J. Aslanides,
N. Vyas, M. Wicke, X. Ma, E. Eltyshev, N. Martin, H. Cate, J. Manyika,
K. Amiri, Y. Kim, X. Xiong, K. Kang, F. Luisier, N. Tripuraneni, D. Madras,
M. Guo, A. Waters, O. Wang, J. Ainslie, J. Baldridge, H. Zhang, G. Pruthi,
J. Bauer, F. Yang, R. Mansour, J. Gelman, Y. Xu, G. Polovets, J. Liu, H. Cai,

Bibliography 125

W. Chen, X. Sheng, E. Xue, S. Ozair, C. Angermueller, X. Li, A. Sinha,
W. Wang, J. Wiesinger, E. Koukoumidis, Y. Tian, A. Iyer, M. Gurumurthy,
M. Goldenson, P. Shah, M. Blake, H. Yu, A. Urbanowicz, J. Palomaki, C. Fer-
nando, K. Durden, H. Mehta, N. Momchev, E. Rahimtoroghi, M. Georgaki,
A. Raul, S. Ruder, M. Redshaw, J. Lee, D. Zhou, K. Jalan, D. Li, B. Hechtman,
P. Schuh, M. Nasr, K. Milan, V. Mikulik, J. Franco, T. Green, N. Nguyen,
J. Kelley, A. Mahendru, A. Hu, J. Howland, B. Vargas, J. Hui, K. Bansal,
V. Rao, R. Ghiya, E. Wang, K. Ye, J. M. Sarr, M. M. Preston, M. Elish, S. Li,
A. Kaku, J. Gupta, I. Pasupat, D.-C. Juan, M. Someswar, T. M., X. Chen,
A. Amini, A. Fabrikant, E. Chu, X. Dong, A. Muthal, S. Buthpitiya, S. Jauhari,
N. Hua, U. Khandelwal, A. Hitron, J. Ren, L. Rinaldi, S. Drath, A. Dabush, N.-
J. Jiang, H. Godhia, U. Sachs, A. Chen, Y. Fan, H. Taitelbaum, H. Noga, Z. Dai,
J. Wang, C. Liang, J. Hamer, C.-S. Ferng, C. Elkind, A. Atias, P. Lee, V. Listík,
M. Carlen, J. van de Kerkhof, M. Pikus, K. Zaher, P. Müller, S. Zykova, R. Ste-
fanec, V. Gatsko, C. Hirnschall, A. Sethi, X. F. Xu, C. Ahuja, B. Tsai, A. Ste-
fanoiu, B. Feng, K. Dhandhania, M. Katyal, A. Gupta, A. Parulekar, D. Pitta,
J. Zhao, V. Bhatia, Y. Bhavnani, O. Alhadlaq, X. Li, P. Danenberg, D. Tu,
A. Pine, V. Filippova, A. Ghosh, B. Limonchik, B. Urala, C. K. Lanka, D. Clive,
Y. Sun, E. Li, H. Wu, K. Hongtongsak, I. Li, K. Thakkar, K. Omarov, K. Ma-
jmundar, M. Alverson, M. Kucharski, M. Patel, M. Jain, M. Zabelin, P. Pela-
gatti, R. Kohli, S. Kumar, J. Kim, S. Sankar, V. Shah, L. Ramachandruni,
X. Zeng, B. Bariach, L. Weidinger, A. Subramanya, S. Hsiao, D. Hassabis,
K. Kavukcuoglu, A. Sadovsky, Q. Le, T. Strohman, Y. Wu, S. Petrov, J. Dean,
and O. Vinyals, “Gemini: A family of highly capable multimodal models,” 2024.

[122] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang,
and T. B. Hashimoto, “Stanford alpaca: An instruction-following llama model.”
https://github.com/tatsu-lab/stanford_alpaca, 2023.

[123] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever,
“Robust speech recognition via large-scale weak supervision,” 2022.

[124] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “Chatgpt for robotics:
Design principles and model abilities,” 2023.

[125] M. Colledanchise and P. Ögren, “Behavior trees in robotics and ai,” July 2018.

[126] M. Ghallab, C. Knoblock, D. Wilkins, A. Barrett, D. Christianson, M. Fried-
man, C. Kwok, K. Golden, S. Penberthy, D. Smith, Y. Sun, and D. Weld, “Pddl
- the planning domain definition language,” 08 1998.

[127] Groot, “Groot behavior tree library,” 2024.

https://github.com/tatsu-lab/stanford_alpaca

