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A self-driving car which takes an autonomous decision needs three main building
blocks, a perception module, a prediction module and a planning module. In this
thesis, we consider the vehicle already capable of understanding the surrounding
area; thus, we focus on the prediction module, which is responsible for predicting
the future of the other agents in the scene. Thus, we examine, in particular, the
prediction in urban driving scenarios in a multimodality setting where the model
can learn to predict all the possible future scenarios in such complex environment.
The predictions consist then of multiple sequences of coordinates plus the prob-
ability for each future. After having investigated the past and current methods,
we have implemented different baselines, both deep learning methods and not.
Hence, examining both the data that we used, and the network structures, we
believe that some improvements are possible, and here we propose some methods
to address those problems. First, we extend the previous loss with an additional
term called offroad loss that penalise the model when the prediction lays outside
of the road structure. Second, considering also that difficult scenes are rarer than
simple scenes, we propose two different weighted sampling methods to overcome
such imbalance, in this way, the model can adapt the prediction to more compli-
cated and rare scenes. Finally, we try to extract more useful information from
road structure, nearby agents and past information implementing different atten-
tion architectures inside the models. In this thesis, we also conduct a performance
comparison between our methods and the baselines applying commonly used met-
rics. Moreover, to visually understand the impact of each method, we propose
some anecdotal analysis showing the real differences in terms of prediction in
some challenging situations.
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Abbreviations and Acronyms

TV Target Vehicle

SV Surrounding Vehicle

EV Ego Vehicle

BEV Bird’s Eye View

GAT Graph Attention Network

ADE Average Displacement Error

FDE Final Displacement Error

MTP Multimodal Trajectory Predictions
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Chapter 1

Introduction

1.1 Background

According to the annual accident report [9] made by the European Road
Safety Observatory in 2016, 25.600 people died from car accident and more
than 1,4 million of people got injured. In the past few years, autonomous
driving has improved significantly and is shortly expecting to become a re-
ality increasing safety and decreasing at the same time travelling time and
traffic congestion.

Generally, in order to take an autonomous decision, a self-driving car needs
three main components: a perception module, a prediction module and a
planning module. The first one is the perception and consists on the lo-
calization and identification of the different parts of the road structure, for
example being able of distinguishing the road structure from the vehicles
that are on the road is part of the perception task. Once the perception
task is completed, and the network can understand the surrounding area,
we want to predict the immediate future of the agents in the area. Thus,
the prediction task consists of predicting the immediate future of the nearby
agents. After having completed both perception and prediction, we can plan
the motion of the self-driving car and so we have the planning task.

Therefore, in this thesis, we aim to predict the future positions of a par-
ticipating vehicle (agents) in an urban traffic scenario. Also in this thesis,
we assume the availability of sensor data coming from the vehicles, as well as
the contextual data coming from perception data, such as the surrounding
map. In the following, we will give high level of our problem statement and
approach.
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1.2 Problem statement

One of the classic existing approach to address the behaviour prediction
problem is to use traditional kinematic models, such as the bicycle model
[15], relying only on the information coming from the target vehicle. How-
ever, due to the high complexity of the driving scenario, those methods are
reliable only for short-time prediction because they are not able to capture
all the scene details [17]. Thus, deep learning methods have started to gain
more and more popularity due to their ability to handle more complicated
situations.

Hence, to better define the problem that we are addressing, we can split
the behaviour prediction into two macro-areas, the prediction in a highway
scenario and the prediction in an urban driving scenario. In this thesis, we
decided to focus on prediction on urban driving scenario for two reasons; the
first one is that the urban scenario is much more complex and diverse than
the highway. The second reason is that in the urban driving scenario, many
interactions are happening between the agents in the scene, and so being able
to correctly predict the behaviour is much more interesting than the highway
from a practical application perspective.

Also, we have to split the prediction task into two categories, unimodal
prediction and multimodal prediction. In the unimodal setting, the
goal is to predict a single future that is close as possible to the real one,
while with the multimodal setting, the goal is to capture all the possible
driving scenarios generating multiple futures. However, in an urban driving
scenario, every agent has multiple paths that can choose and so, a model
that predicts only one possible future tends to predict a trajectory that is
the average of all the possibilities, often resulting in an infeasible prediction.
Hence, to overcome such problem the model should be capable of predicting
multiple scenarios assigning to each future a probability and the multimodal
setting try to address exactly this problem.

Therefore, the main goal of this thesis is to investigate the trajectory predic-
tion, i.e., to predict the future positions of a given participating vehicle, in a
multimodality setting. Given the input consisting both of agents dynamics
and the contextual information, the output of the prediction is twofold: the
set of future trajectories and the probabilities of each of them. Moreover,
we are going to pay particular attention to the feasibility of the trajectories
and to the adaptation of the model. We can define a trajectory feasible if it
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can be executed from both vehicle dynamic and road structure perspective.
While, the adaptation is the ability of the model to adapt to the different
road situations, e.g., road intersections or turning scenarios.

1.3 Approach overview

Considering that we decided to focus on urban driving scenarios, we chose
as dataset nuScenes[3], where there are 1000 scenes of 20s each collected in
Singapore and Boston. Then, we implemented three baselines, the Physi-
cal Oracle, MTP[5] and CoverNet[22]. The first one is based on kinematic
models while the other two are deep learning methods. The Physical oracle
receives as input only the agent dynamics to generate a unimodal predic-
tion, while, MTP and CoverNet uses the agent dynamics and a top view
representation of the area to produce a multimodal prediction. After having
investigated both baselines and data structure of the dataset, we found some
critical points, and in this thesis we propose some methods to solve those
problems.

First, we noticed a significant data imbalance between complex and sim-
ple scenes, resulting in a trained model that is able to perform well on simple
scenes but, it is unable to understand more complicated scenes. Therefore,
we propose two different sampling methods based on lane density and lane
curvature to show more often challenging scenes during the training process.
This approach has shown to improve significantly the performance by allow-
ing the model to better adapt to each scenario.

Next, we consider the level of understanding of the road structure. Exam-
ining the standard baselines, we realize that often the model is not capable
of understanding the road structure, ending up with a non-feasible predic-
tion. To avoid such behaviour, we introduce and additional loss term called
OffRoad loss that penalizes trajectories that are outside of the drivable area.

At last, we believe that there are some parts of the baselines models struc-
tures where the features are not fully exploited, in particular, regarding the
past agent state vector, the features from the top view image and from the
nearby agents. For this reasons, we introduce multiple attention models to
pay attention respectively to the information that is coming from the past
using a Transformer layer [26], to the neighbor agents in the scene using
a graph attention network[27] and to the surrounding image representation
using a dual attention module [10].
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Finally, we evaluate and compare the quality of the predictions of our im-
provements using multiple metrics commonly used in literature. Moreover,
to show also the real differences between the predictions, we propose some
anecdotal examples to better visualize difference and improvements.

1.4 Structure of the Thesis

This thesis is structured as follows, in Related Work (chapter 2) we analyze in
detail the trajectory prediction problem and which are the typical approaches
that are used to face this problem, classifying the previous attempts using
the representation of input and output .

Moving to the Methodology (chapter 3), we discuss here which data we used
during the experiments, how we represent it and some findings related to
it. We also examine the three different baselines that we have implemented:
Physical Oracle, MTP and CoverNet. Then starting from the baselines, we
explain more in details the different improvement that we propose.

Afterwards in Implementation (chapter 4) we focus more on some techni-
cal aspects relative to the experiments such as the frame representation, the
resampling methods and other techniques like batch averaging.

In the Evaluation (chapter 5) we then define the different metrics that are
adopted to evaluate the models, and we analyze in detail each model and how
every modification has affected the quality of the predictions. Additionally,
it follows a section of anecdotal analysis in which we report some meaning-
ful examples for understanding the different improvements. Consequently, it
follows a Discussion (chapter 6) and then Conclusion (chapter 7).



Chapter 2

Related work

In order to understand the behaviour prediction problem, we introduce here
some basic notation explaining the different approaches that researchers are
commonly using to face this problem. Therefore, after a brief introduction
about the terminology, we classify the most common approaches using their
input and output representation. For each method, we consider positive and
negative aspects giving some real examples.

2.1 Preliminary

Before starting it is useful to define some basic notation to represent the
different agents that are involved in the problem:

e Target Vehicles (T'Vs), the vehicle interested in the prediction

e Ego Vehicle (EV), the autonomous vehicle from which we receive the
data

e Surrounding Vehicles (SVs), the vehicles nearby the TVs, and they
directly affect the TV’s behaviour.

e Bird’s Eye View (BEV), top view representation of the surrounding
area.

2.2 Input representation
We start now from the input representation, examining in details the differ-

ent methods. It is evident that to have a precise prediction; we should be
able to represent the surrounding area in the highest accurate way. Thus,

12
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we should be capable of having a correct representation of the contextual
information of the scene and at the same time, have a good representation
of the agent dynamics. For representing the surrounding area, we commonly
encode the contextual information with a top view representation. While,
for the agent dynamics data, we rely more on the vehicle sensors to capture
the movement of the vehicles.

Hence, we can divide the representation into four macro categories: only
information form the TV, information from both TV and SVs, simplified
bird’s eye view and raw sensor data.

Figure 2.1: Example of driving scenario with the proposed terminology [20]

2.2.1 Target Vehicle track history

The fisrt approach is to use only the information from the target vehicle.
Conventionally those features are position, velocity, acceleration and heading
changing rate, here, we consider both the possibility of using only the current
state or using both current and past state. Receiving information just from
the TV the model is usually capable of learning well the dynamics of the
vehicle, for example, if the vehicle is going straight, the network is able to
predict the future correctly, same if it is turning. However, due to the lack
of information from both nearby agents and road structure, the model does
not have any information from the surrounding area. Thus, it is almost
impossible for the network to predict a slow down if the vehicle in front is
slowing down or a turning before the car starts to turn. As examples from the
literature, we have [29, 30|, where the track history is used to predict different
road junctions, but they reduced the complexity of the scene removing other
surrounding vehicles.
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2.2.2 Target Vehicle and Surrounding Vehicles Infor-
mation

A different input is to use track history from both the target vehicle and
surrounding vehicles. As expected, this approach leads to a better under-
standing of the different vehicle’s interactions. The number of SVs consid-
ered can be chosen statically as in [1] where they decided that 9 SVs was the
correct number, or dynamically as in [18] where the authors have imposed a
distance threshold for selecting if a surrounding vehicle is relevant or not for
the TV. However, despite the number of SVs considered, those approaches
do not consider either occlusion (which may hide connected vehicles) or the
road structure which can profoundly influence the future trajectory.

2.2.3 Bird’s Eye View

One more common approach is to use a simplified Bird’s Eye View (BEV).
Using this method is possible to combine dynamic elements such as surround-
ing vehicles, or pedestrian and static elements such as a roundabout, drivable
lanes and pedestrian crossings on the same image. In fact, from Figure.2.2,

Figure 2.2: Example of BEV

the BEV is capable of representing both road structure and moving agents.

There are multiple examples of possible BEV representation. For exam-
ple, from [16], they try to improve the safety of the ACC (Adaptive Cruise
Control) stacking multiple two-channel BEV on top of each other building a
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2n-channel image, encoding the temporal dimension into the input so that the
network can sequentially learn better the road dynamics. Another example is
[5] in which the network receives as input only one image. However, instead
of being a two-channel image, every road element has his colour scheme that
changes dynamically, resulting in a more informative representation like in
Figure.2.2. Nevertheless, this approach is often results quite complicated for
the network to understand, leading to the possibility of losing information
only because the model is unable to extract it.

2.2.4 Raw sensor data

The last input method that we are covering is the usage of raw data. With
this method, the network understand the data trying to extract meaningful
information from it. However, this approach requires more computational
power due to the high dimensionality of the data. Therefore, directly using
the raw data can be computationally infeasible in a real implementation in
an autonomous vehicle. An example where a model directly exploits the
LiDAR data is [4] in which they use both LiDAR and BEV representation
to predict the future coordinates and the intention such as keep lane, turn
left, turn right, etc.

2.2.5 Combine inputs

Every input approach previously described is capable of emphasizing a par-
ticular aspect of a driving scenario. Thus, in the more refined models such
as [5, 13, 19, 22] is common to combine information that is coming from the
surrounding representation using the BEV and detailed dynamic informa-
tion of the specific TV. With this approach, the network is then capable of
having a general idea, but at the same time, can focus on the specific agent
generating a more reliable prediction.

2.3 Output representation

We now move our focus to the possible output representations, examining
the positive and negative aspect of each method.

2.3.1 Intention

As first and simpler method we mention the intetion prediction, which is
the task of classifying future behaviour using a set of manoeuvres. For ex-
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ample, in [4, 7], the authors have trained the network to predict a set of
future manoeuvres such as keep lane, turn lane, etc. It is immediate to see
that this approach has its advantages and its disadvantages, in fact, reducing
the forecasting task to a finite set of manoeuvres dramatically simplifies the
complexity of the prediction. On the other hand, it is clear that despite the
granularity of the manoeuvre set, for example, classifying sharp and regular
lane, the set always remains finite. While directly predicting the coordi-
nates allows the model to be much more precise at prediction time. Still,
it increases at the same time, the complexity due to the infinite coordinate
possibilities.

2.3.2 Unimodal Trajectory

In order to avoid the problems of precision introduced before with the in-
tention approach, we present here the unimodal trajectory prediction. With
this method, the task of the network is to predict the sequence of coordi-
nates over a fixed time window. Thus, the problem of predicting the future
trajectory can be defined as predicting:

i i i i i N

XTVs = {(xt’ yt)? (‘Tt—i-lv yt+1)7 ) (xt-&-mv yt-&-m)}i:l ’ (2'1)

where (z},y;) are the Cartesian coordinates of the vehicle ¢ at time ¢ and N
is the number of vehicles predicted and m is the length of the points predicted.

There are multiple attempts of unimodal trajectory, for example in [18] the
authors used a graph neural network to predict the future location of the all
nearby agents simultaneously or in [8], where they used as input a rasterized
map, velocity, acceleration and heading change rate to predict the unimodal
future.

Despite being much more refined than the intention base approach, the uni-
modal approach fails not considering the multimodality of the driving sce-
nario. For example, if an agent is at a road junction, usually it has multiple
possible future trajectories, like turning left or right. However, with a model
capable of generating only one possible future we lose the possibility of un-
derstanding those road details, in fact, the network usually tends to average
among all the possible futures, ending up with a non-feasible prediction.

2.3.3 Multimodal Trajectory

In order to solve the problem previously described, we introduce the mul-
timodal trajectory prediction. With the multimodal approach, the network
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Figure 2.3: Multimodal Prediction [5]

predicts a fixed number of possible future trajectories, and for each trajectory
output also the probability that every particular scenario is going to happen.
Hence, the multimodality version of trajectory prediction can be defined as:

MTVs = {(XZTVsapZ)7 (X%—i\_/lsvpz+l)7 ) (XZ{{VsapK)}fil ’ (2'2)
where K represent the number of modes that the model predicts and p* are
the probability of each mode to be the real one. Therefore, predicting a vari-
ety of different futures, the model learns better to understand the dynamics
of the road scenarios, realizing for example, that at an intersection usually,
a vehicle has multiple potential possibilities of manoeuvres. To understand
an example of how a multimodal prediction looks like we can see Figure.2.3,
where the network predicts the possible driving scenarios, and for each future
behaviour, it also predicts the probabilities.

Hence, the advantage of the multimodal approach became quite clear, espe-
cially in urban driving scenarios where the complexity of the road structure
is much higher than the highway. As examples of multimodal we can cite [5]
and [22] where the authors have used features coming from BEV and TVs
to generate possible futures, those two models are also our baselines, and we
will cover and analyze more in details their structure in the following chap-
ters.
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2.3.3.0.1 Why multimodal To realize why the multimodal prediction
is the most complete among all the methods, consider that we want to use
the behaviour prediction system into our autonomous vehicle. Hence, having
a model that is capable of always generating the correct prediction out of his
different modes can lead to a vehicle that is capable of understanding the
future and then plan a safe trajectory as a consequence.

Moreover, with the multimodal approach, we can decide the number of modes
that the model has to predict. So, we can create constraints and refine the
level of understanding of the model. For example, if the network has 10
modes instead of 5, it will be able to generate a more refined prediction of a
particular scenario. For instance, a turning manoeuvre can look very differ-
ent depending on the driver, and so, the model with more modes will be able
to create a better representation. At the same time, increasing too much the
number of modes leads to more complexity that can deteriorate the model
capabilities of choosing the correct predictions among the different modes.
For all the reasons previously mentioned, our prediction approach will always
be multimodal.
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Methodology

After having introduced the problem with all the different details between
output and input representation, we now describe our methods. In the fol-
lowing sections, we are going to consider the data used, the different baselines
implemented and how we have tried to improve the baselines performances.

3.1 Data Analysis

We start with the description of data used in this thesis and present some
results of the analysis.

3.1.1 Dataset

Considering that our focus is on urban driving scenes, we decided to use as
dataset nuScenes [3], developed by Motional. NuScenes is a public large scale
dataset, where the data collected comes from real urban driving scenarios in
Boston and Singapore, there are 1000 scenes of 20 seconds each with anno-
tation for 23 object classes that are annotated every 2Hz. The data comes
from a full suite of sensor: 1 LiDAR, 5 RADAR, 6 cameras, IMU and GPS.

Even though nuScenes was initially designed for perception tasks such as
classification or segmentation, they expanded the dataset capabilities also
for behaviour prediction. Therefore, Motional has created a devkit giving
the possibility to extract relevant feature for the prediction task. For exam-
ple, they have introduced the possibilities of extracting all the agents in a
particular scene, or they allowed getting the past or the future agent state
vector of each agent. Another useful implementation is the possibility to
generate a BEV version of the map as described in the previous Figure 2.2.

19
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"Ped with pet, bicycle, car makes a u-turn, lane change, peds crossing crosswalk"

Figure 3.1: Example of data structure [3].

3.1.2 Input Representation

As input for our experiments, we always use a combination of the methods
described in 2.2. In all the experiments, we changed the representation of
the agent state vector multiple times, but the BEV image is always included
to encode the general information. Therefore, having a frame in which the
information are correctly represented, become crucial for good performance
of the model. Thus, we construct the frame so that the target vehicle is
always on centre pointing upwards. In this way, the TV is always at the
centre of the reference system. Consequently, it is easier for the network to
focus on the relevant data.

The frame has dimension (500,500) pixel with a resolution of 0.1 meter-
s/pixel. There are 40m ahead, 10m behind, and 25m left and right to the
TV at the centre. Moreover, every agent has the "shadow” in which the
past is represented in a fading colour. The lanes centerline are represented
with a specific colour schema in which red/orange lanes are in the opposite
direction while blue/green lines are the ones in the correct driving direction
of the TV.
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Figure 3.2: Frame example

3.1.2.1 Agent State and History

Another relevant part of the input is the agent state vector which is com-
posed of speed, acceleration and heading changing rate of the target vehicle.
However using only the current information might lead to a non-precise un-
derstanding of the physics of the target vehicle, for this reason, we also de-
cided to include the previous two second of history in the agent state vector.
Compared to HighD [14], which is a dataset based only highway, nuScenes
is based on urban driving scenarios. Therefore, the interactions between the
surrounding vehicles are very relevant for a complete understanding of the
situation. For this reason, we also conducted experiments using state vectors
from the nearby agents.

3.1.3 Data investigation

Evaluating more in detail the data structure, we find out that nuScenes iden-
tify the data using instance and sample tokens, where the instance defines
the agent and the sample defines the time. Hence, using the sample token
is possible to retrieve all the agent in a particular scene while with the in-
stance token, we can retrieve information of a specific agent. In total there
are 49787 pair of instance and sample tokens that we split in 32186 tokens
for training and 9041 tokens for validation.

Considering the urban driving nature of nuScenes is interesting to inves-
tigate how is the distribution of the vehicles and the road elements. Using
a token is possible to retrieve which vehicle we are analyzing and on which
road elements the vehicle is riding. Where the road elements are classified
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into two macro-categories, the lanes and the road segments, the first ones are
standard lanes while the second ones are intersections.

From Figure 3.3a we find that as we were expecting, the amount car is
significantly higher than the other vehicles. However, it is important to no-
tice how the bus, that is a typical city transportation method is relevant in
the driving scenario, counting in total 3568 scenes considering both rigid and
bendy busses. Regarding the road segments and lanes distributions, is inter-
esting to point out the magnitude of road segments that despite being lower
than the lanes are still in a considerable number and they are contributing
to add more complexity in the driving scenario.

35000

police
30000
construction 25000
bus.bendy 20000

bus.rigid 15000

—
car

0 10000 20000 30000 0 lane

truck

road_segment

(a) Vehicle distribution (b) Lane distribution

Figure 3.3: Vehicles and road elements distribution

3.1.3.1 Data imbalance

Even though nuScenes is based on urban driving scenarios, we have found a
high level of imbalance between the complexity of each scene. To analyze such
difficulty, we have extracted with a certain level of accuracy the manoeuvres,
using the information relative to the motion of the vehicle. Thus, we classified
three possible manoeuvres, lane following, turning, and lane changing. Then,
analyzing the distribution of those manoeuvres, we notice a high imbalance
between the manoeuvres, with the following lane covering the majority of the
manoeuvres. We usually expect to have a certain level of imbalance because
the other two manoeuvres tend to occur much more rarely. Nevertheless, we
believe that a system to balance the different manoeuvre is needed. From
Figure 3.4 is quite evident that the majority of samples are following lanes



CHAPTER 3. METHODOLOGY 23

Iane_changingl
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0 25000 50000 75000 100000

Figure 3.4: Maneuver occurrence in the dataset

which are usually easier to learn. In contrast, other manoeuvres such as
turning or lane changing are rarer and consequentially more difficult for the
network to learn. For these reasons, we propose two different methods of
sampling that we will analyze in the following sections.

3.2 Models

We now examine the different models that we have implemented, considering
their weak points and what we have done to improve those models.

3.2.1 Baselines

We have then implemented three different baselines.

3.2.1.1 Physics Oracle

The first model, that we consider, it is not a neural network but is based
on different kinematic models. What the Physical oracle does is to execute
multiple physical models and then select the most similar to the ground truth
trajectory. We have then implemented the following models.

3.2.1.1.1 Constant velocity and heading Given x,y coordinates and
v, vy velocity the model is:

ittt b+ Atv,
|:yt+1} = [yt—l—Atvy] ) (3.1)

where At is the time passed between (¢, ') and (z*1, y'*1) .
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3.2.1.1.2 Constant speed and yaw rate Considering that the speed
and yaw(f) rate are constant, we compute the future positions as follows:

il xt + dist_step * cos 0
Yt = | y' + dist_step xsin@ | | (3.2)
g+l 7t + 0 _step

where given the sampling frequency at f = 2H z the 6_step and dist_step are:

1
dist_step = ? * speed, (3.3)
1
0_step = 7 * yaw_rate, (3.4)

3.2.1.1.3 Constant acceleration and heading With the acceleration

and the heading constant we obtain:

fian b+ Atv, + %At%ccm
1| = |t A T A2 ) (3~5)
Yy y" + Atvy, + 5At%acc,

3.2.1.1.4 Constant acceleration and yaw rate We examine now the
acceleration constant and 6_rate constant as before:

il x! + dist_step * cos 0
Yt = | y' + dist_step x sin@ | | (3.6)
gt+1 0" + 0_step

considering always the frequency as f = 2Hz and the 0_step as 3.4 but this
time the dist_step is computed at every iteration as it follows:

1
dist_step = ? * speed, (3.7)

where the speed is:

1
speed = speed + 7 * ace, (3.8)

3.2.1.1.5 Prediction with kinematic models Thus, in order to gener-
ate the coordinate (x,y) given the state from the TV, the model compute the
predictions using each kinematic model described above, then it select the
prediction choosing the one with the least L2 error. This approach cannot
be considered as a valid prediction approach because it is using the ground
truth directly to generate future trajectories. However, it is useful to have it
as a baseline because it allows us to study the difference between the deep
learning approach and a more classic approach.
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3.2.1.2 MTP

Moving to the deep learning models we start with MTP (Multimodal Trajec-
tory Predictions for Autonomous Driving using Deep Convolutional Networks
[5]), where the authors are combining rasterized image and agent state vector
to predict the multimodality of the driving scenario.

3.2.1.2.1 Network structure From Figure 3.5 we see that the network
receives two separate input, a rasterized image of the driving scene and the
current actor state (velocity, acceleration, and heading changing rate). Then
the BEV is processed trough a pre-trained CNN, in this case MobileNet-V2
[24]. After that, the rasterized features and the state input are concatenated

-

fully
connected

raster
ST T A features

raster input

fully
connected

Figure 3.5: Network Structure from [5].

and processed trough some fully connected layers. The main contribution of
MTP was to combine the prediction task and the mode classification task
using only one architecture. Thus the output of the network is composed
of the sequence of coordinates (x,y) multiplied for the number of modes M
that the network predicts and the probability for each predicted mode.

3.2.1.2.2 Loss The final objective of MTP is to predict the future tra-
jectories and then also to decide which one of that possible futures is the
most likely. To do that the authors developed two different losses, one for
the classification and another one for the regression and they call it Multiple-
Trajectory Prediction loss. They created this loss because only using a mix-
ture of experts (ME) eq.3.9, will cause the mode collapsing problem in which
all the predictions point to the average, similar to what happens with the
unimodal approach.

M
Ezj']v'[E = Z Pim L (Tij Timj), (3.9)
m=1
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So, they identify the mode m+ which is closest to the ground truth using a
distance function dist(7;;, Tim;). Then, the best mode can be selected as:

mx = argmin dist(7;j, Timj ) (3.10)
me{l.M}

as a classification loss, we can consider a cross-entropy loss defined as follows:

M
L9 = =N " Ly s 108 i, (3.11)

m=1
where p;,,, is the probability of each mode. It is now possible to define the
final M'TP loss as:

M
LY = L5740 Leme L(Tij, Timj ) (3.12)

m=1
where « is a hyperparameter and L is the 2 — norm. It is worth to mention
how MTP select the best mode, in fact, it has proved that the euclidean
distance it is not able to model well at the intersections and so they proposed
to choose the best mode using the angle difference. From fig.3.6, we can see

Figure 3.6: Difference between and angle distance [? ]

the different predictions and the ground truth. The green line is the ground
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truth, and the blue lines are the predictions. If we use the distance approach
to choose the best one, the right turn will result as the best; otherwise,
if we select using the angle difference, the straight prediction will be the
chosen one. This aspect is relevant because the regression loss will compute
the difference using only the best trajectory. In this way, each output of
the network will be specialized in a different trajectory (e.g. going straight,
turning left or right).

3.2.1.3 CoverNet

Another interesting approach studied is CoverNet [22]; here, the authors have
changed the task of the network from regression to classification. To do that,
they have created a set of trajectories that are representative of the possible
future scenarios. Therefore, what the network does instead of predicting the
coordinates is to give a probability of each trajectory inside a defined set
of trajectories that are generated sampling directly from the training data.
The idea behind this approach is to use the trajectory set to avoid the mode

00

Figure 3.7: Trajecory set [22]
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collapsing already discussed in 3.2.1.2. This method can solve the problem
because the network does not have to predict future coordinates, but only
has to predict the probability of each possible output scenario.

3.2.1.3.1 Network structure Regarding the network structure, we find
a similar approach already encountered in MTP. The model receives as input
a BEV image and the state input representation (speed acceleration and yaw
rate). Then the network output is a vector containing the probabilities for

Batch size x 2058 Batch size x 4096 Batch size x K

\ \ “:' N\,
Dz Mode 0, lﬁh‘ o
- Convolutional Flatlen | features Dense Dense Eﬂhabl'l‘iﬂ]u - —
> neural — 5 s P @'
network N I ’54

Output
(trajectories with probabilities)

Scene raster input
(3 channels)

Concat State
State input input Trajectory set
(speed, accel, yaw rate) | generator

Figure 3.8: Network Structure [22].

each mode of the trajectory set. Differently from [5] the authors have used
as backbone for the rasterized image a Restenet-50 [11] already pre-trained
on ImageNet[23].

3.2.1.3.2 Loss Considering that the output dimension is equal to the
number of different trajectories from the trajectory set, the loss of CoverNet
is relatively simple. In fact, given the ground truth coordinates is possible to
find which trajectory is the best for that particular situation using the mean
pointwise L2 distance. So, given the coordinates:

m ,m m m m m N
tm = {(xt )y Yt )7 (‘Tt+k7 yt+k)7 (xt—i-m yt-l-n)}k:l ) (313)

9 ={(x6, ), (Terks Yerk)s (Tegm, yn)}]kvzl ) (3.14)

respectively, the trajectory coordinates of a mode m and the ground truth
coordinates, it possible to compute the £2-norm as follows:

N
>y It —gillz

- , (3.15)

f2-norm =

At this point, to get the best mode we have to select the one with the lower
distance using argmin. Therefore, knowing which mode is the best from the
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trajectory set, is possible to compute the cross-entropy loss among all the
given output probabilities from the network:

covernet = —_lo exp(x[class])
L (x,class) = —log <—Z] exp(a:[j])) , (3.16)

3.2.2 Improvements

Examining the baselines described in the previous chapter, we have found
some critical points of those architectures. Therefore, in the following sec-
tions, we are going to cover the methods implemented to overcome such
problems.

3.2.2.1 Transformer

The first modification regard the lack of information coming from the past.
As discussed in 3.1.2.1, most of the relevant information to predict the fu-
ture is encoded in the past. However, those data are not considered in the
baselines previously described. Therefore, we decide to learn the past using
a Transformer [26] layer. We chose to use this approach because the Trans-
former is already well known for his capabilities of handling sequences of
data. Thus, the past 2 seconds of the TV are processed by the Transformer
layer to learn useful information.
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Figure 3.9: MTP architecture with Transformer [26].

Moreover, we have realized that after the concatenation between TV fea-
tures and backbone feature, there might be a lack of understanding of the
correlation between those representations. For this reason, we try to capture
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the correlation using the self-attention mechanism provided by the Trans-
former encoder.
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Figure 3.10: Dual attention architecture.

3.2.2.2 Graph attention network

Another critical piece of information that is missing from the previously de-
scribed methods is the lack of information coming from the nearby agents.
Especially in urban driving scenarios where interactions between agents occur
much more frequently that information is fundamental for a reliable predic-
tion. For this reason, we decided to model those interactions using a graph
attention network [27]. In the past, there have been other attempts to model
nearby interactions. For example, in [6], they used a convolutional social
pooling layer to extract useful information from a social tensor populated
using LSTM trough a spatial grid around the agent. However, graph net-
works are more suitable to learn interactions between different vehicles, and
in particular, the graph attention network has shown to be efficient from
a computation perspective without sacrificing state-of-the-art performance.
For this reason, we decided to follow a similar approach of [13] in which they
use Bicycle-GAN and graph attention network for pedestrian behaviour fore-
cast.

What GAT does to understand the different interaction between nodes is
to use a self_->att_e>nti02> mecharfm. Thus, the input is a set of node fea-
tures, h = {hy, ha, .., hp} with h; € R where N is the number of nodes, F
are th% fegturesﬁ in each E}ode and the output is a new set of node features
h = {hy, hy,.,h,} with h; € R where R could have a different cardinal-
ity.
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Therefore, after having transformed the input feature to an higher-level R¥’
with a fully connected layer:
A0 =wORD, (3.17)
a self-attention is performed on the nodes. Then, we obtain the un-normalize
attention score between the nodes 7, j as:
eg-) = LeakyReLU(d®" (zi(l)|z](-l))), (3.18)
where a is another fully connected layer and | represent the concatenation.

After that, the attention coeffiecents are normalized using the softmax func-
tion:

A exp(e;;)

’ > ken €xP(€ik)’
It is important to notice in 3.19 that in the original paper the authors used a
system of masked attention in order to pay attention only to the first-order
neighbors of the node 7, while in our implementation every node can attend
all the other nodes. Next, we use the normalized attention score to compute
the output of each node:

(3.19)

—
W =0 (Z aijWEj) , (3.20)

Therefore, we create the graph as follows. Given N nearby agents, we cre-
ate a fully connected graph, so that every node can attend every other node.
Then we select the N nearby agents (NA) to the target vehicle and given the
global coordinates (zyaq,ynag) of the nearby agents and (zrve, yrve) of
the TV is possible to compute the relative coordinates (zxar, ynar) with re-
spect to the target vehicle. Then, we pass the past 2s of relative coordinates
from both NA and TV trough the same LSTM layer. Thus, every output of
the LSTM will be the feature of each node of the graph.
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Figure 3.11: Architecture with GAT

We decide to use the relative coordinates as features from the graph in-
stead of the agent state vector (speed, acceleration, heading changing rate)
because we believe that knowing the position relative to the target vehicle
is much more meaningful for the network when it has to learn dependen-
cies between agents. However, the agent state vector is really important
to fully understand vehicle dynamics. Thus, we process it using a separate
LSTM encoder. Finally, we concatenate all the features, and we generate
predictions.

3.2.2.3 Backbone Attention

We also believe that another weak point of the two baselines that can be
improved are the features extracted from the BEV image. In fact, despite
the backbone used to extract the features, we believe that there is a lack
of attention on the relevant features that the network can extract from the
BEV. For this reason, we are introducing here a way to attend the relevant
features from the backbone. Therefore, we decided to implement a dual at-
tention module from DaNet [10] in our previous architecture, we chose this
approach for its ability to be implemented in a pre-existing backbone with-
out adding a significant computational demand but significantly improving
performance.

The idea behind DaNet is to have two different self-attention [28] modules
that are executed in parallel after receiving features from a pre-trained back-
bone. Those two modules are the Position Attention Module (PAM) and the
Channel Attention Module (CAM).

Therefore, the Position Attention Module (Flgure 3.12) can learn to ex-
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Figure 3.12: Position attention module [10].

tract useful information between local features while the Channel Attention
Module can focus on the channel relationship improving the feature repre-
sentation of a specific semantic.

Hence, to capture those relations the PAM module has to generate a spa-
tial attention matrix S that model the relationship between any two pixels,
thus, the S matrix is the softmax between the matrix multiplication of B

and C-
eXp(BZ- . Cj)

S exp(B; - Cy)’

It is important to point out that on S, s; measures the ith position impact
on the j* position. Then, a multiplication between the attention matrix
and the original feature is done. Finally, we perform an element-wise sum
between the matrix previously obtained and the original features, so that E
is:

(3.21)

Sij =

N
Ej = Z(SJZDZ + Aj), (322)
i=1
and « is a parameter that is initialized as 0 and gradually learns to assign the
right amount of weight. From eq.3.22 can be seen that E is a sum between
the original features and weighted features across all the positions, this sum
allows the PAM to understand the spatial relation between different elements.
At the same time, the CAM (Figure 3.13) perform the same operations of
the PAM except for the spatial attention matrix that is now the channel
attention matrix and is calculated as:

exp(4; - A;)
>y exp(A; - Ay)

in this case zj; measures the i" channel impact in the j* channel. Then the

(3.23)

xij =
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Figure 3.13: Channel attention module [10].

matrix F is: o
=1

also here, § is parameter that learns the weight. Like in 3.22 also in 3.24
we see that the final features of each channel is a sum between the original
features and features from all the channels.

3.2.2.3.1 DaNet in our network We have implemented two different
versions of our architecture with the DaNet module integrated. The first im-
plementation has the DaNet module inserted after the backbone and before
the concatenation (Figure 3.14). In this way, the features that before were
coming from the backbone now are the sum of the two attention modules.
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Figure 3.14: Single DaNet.

With the second approach, the structure is a bit different compared to the
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initial approach. In fact, we concatenate the features extracted by the PAM
and CAM with the agent state vector, and we repeat for every frame of the
past 2s (Figure 3.15). After that, we create a sequence of those features, and
we encode the time dependencies using a sinusoidal positional encoder mod-
ule like in [26]. In fact, we believe that learning the time dependencies from
the features extracted by the frame helps the network to better understand
the dynamics of the urban scenario.
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Figure 3.15: DaNet concatenated.

3.3 Loss

Another critical part of the learning process is the loss. We have already
discussed in 3.2.1.2.2 how a good loss can avoid problems such as mode
collapsing and how the eq.3.12 is already a well-structured loss to avoid such
problem. However, the previous approaches do not consider the feasibility,
and the safety of the trajectory predicted. For this reason, we decided to
insert an additional loss term that is going to model if the trajectory predicted
lays inside the drivable area.

3.3.1 OffRoad Loss

In order to guaranteed the feasibility of the trajectory predicted, we have to
ensure that the predicted trajectory is inside of the drivable area. Therefore,
inspired by [21] and [19] we implemented the offroad loss.

With the offroad loss we want to penalize the predictions that are far from
the drivable area, and furthest is the prediction higher is the loss. For this
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reason, we created a heatmap of the drivable area as follows.
As first we retrieve the mask of the drivable area where the road as value

1 and the rest is 0, at this point, is possible to create the negative mask
negating each pixel, so that, the drivable area has value 0 Figure 3.16.

R v
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) Drivable area mask b) Negative of Drivable area mask

Figure 3.16: Drivable area mask before and after negation

Afterwards, to compute the heatmap, every pixel is replaced with the
distance to the closest point that lays inside the drivable area. Considering
that the road structure can vary a lot and so also the value of each pixel,
we normalize the heatmap (Figure 3.17). Once the network has generated
the predictions, the offroad loss is computed as follows. For each prediction,
given the sequence of coordinates X = {(z¢, ¥), (Tex1, Yes1)s - (Tetms Yerm) }
we sample from the heatmap (H M) using the trajectory predicted so that
the offroad loss value for each prediction is:

m

111t =N HM (2444, Y144) (3.25)

=0
Then, given M modes we average among the all prediction:

M jof froad
[
goffroad _ El—l 3.26
M ’ ( )

Therefore the final loss will result as:
M

Lij= L3 +a Z Lo LT3, Fomy) + BLETT, (3.27)

=1
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0

(a) Drivable heatmap (b) Original frame

Figure 3.17: Off road heatmap

were [ is an hyperparameter found empirycally.

3.3.1.1 Improvement: OffLane loss

The heatmap based on the drivable area already contains a lot of information
for a safe prediction. However, we have noticed that sometimes, using just
the mask from the drivable area could lead to a 0 OffRoad loss even if the
action predicted was not feasible in real life. For this reason, we are intro-
ducing here a more fine-grained version generating the heatmap using the
centre-lines. With this method the aim is to force the network to focus only
on the possible maneuvers avoiding situations like the invasion of oncoming
lanes that with the offroad standard the loss is not penalized.

The approach is very similar to the one previously described. As it is possi-
ble to see from Figure 3.18 we generate a mask, and then we calculate the
heatmap. Comparing Figure 3.18b and Figure 3.17b is clear that using the
lane heatmap we can restrict the area from actions that are ”feasible”, to the
actions that are "feasible and safe” because the network is forced to put the
focus on the lanes and learn the correct behaviour.
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Chapter 4

Implementation

We move now to the implementation chapter, where we cover here more
the technical details regarding the implementation and some methods that
we used to obtain the best from our models. Commonly among the all
experiments, we used Python 3.7.7, as Deep Learning framework Pytorch
1.4.0 and as optimizer, we used Adam [12] with a learning rate of 0.0001 and
weight decay of 0.01.

4.1 Frame Manipulation

As first, we have to ensure that the input of the model is correctly repre-
sented. Thus, analyzing the BEV with the Motional implementation, we
noticed that the ego-vehicle was not represented in their frames. However,
even if the task is to predict the surrounding agents and not the ego-vehicles,
it is still an essential element of the traffic scenario that can influence the
vehicles that we want to predict. For this reason, we decided to modify the
frames inserting the EV in the representation. In fact, from the nuScenes
documentation, we know that they used a Renault Zoe as a car and from
the data that they have collected is possible to reconstruct the information
relative to the ego-vehicle.

From Figure 4.1, we see that the yellow vehicle on the top left is not present
in the original implementation, but with our implementation, the vehicle is
correctly represented. Even if in this specific situation, the ego-vehicle does
not directly impact the behaviour of the other agents, it is still informa-
tion that can have an impact on the prediction and has to be encoded for
completeness.

39
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Figure 4.1: Frame difference with and without egovehicle

4.1.1 Frame Pre-processing

Once the frame is correctly represented we have to extract the features from
it. However, the feature extraction is a common part of the training process
that we have to do in all the different architectures explained in 3.2 with
the only exception of the DaNet in which we trim the Resnet-18 one layer
before to have more information to attend. Therefore, in all the cases, we
always have a pre-trained backbone that extracts the features from the BEV
image before the concatenation with the agent state vector. Thus, checking
the inference time for Resnet-18 we have noticed that the computational
time for features extraction was taking a considerable amount of time. In
fact, considering just a small set of 60 frames, the feature extraction from
the backbone takes 6.66s while loading the same feature pre-processed takes
just 0.015s.

Hence, considering that we are not training the backbone, but we are only
using it for extracting features, we decided to pre-compute those features to
save time during the training process.

4.2 Early stopping

Selecting the best model while train can be not trivial, for this reason, we
have created a mechanism of early stopping. At the end of every epoch, we
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evaluate the model on a subset of the training set using a heuristic that is so

composed:
heuristic = 0.5« MinFDF, + MinADFEj (4.1)

Where the metrics used in the heuristic are described in sec.5.1.1 and sec.5.1.3.

The idea behind those metrics is to extract a model that is capable of per-
forming well on the single prediction MinF DE; and at the same time is also
capable of understanding the multimodality of the traffic scenario MinAD Es.
We propose this approach because the final goal is to predict the multimodal-
ity of the driving scenario and, focusing only on the final prediction could
lead to a model that tends to average all prediction having the problem of
the unimodal trajectory prediction (sec.2.3.2). The network is then tested
on a sub-set of scenes selected using the adversarial validation technique ex-
plained in 4.2.1.

To end the training, we also used a system of patience; in this way, we can
control how many epochs the model can continue training without improving
his performance. In fact, at every epoch after the evaluation we control if the
performance has improved, if not we increase the patience counter otherwise
we set back to 0, once the counter reaches a specific limit N it means that
the network has not learned anything useful on the past N epochs, for this
reason, the training process is terminated.

4.2.1 Adversarial Validation

In order to extract the best model while training, we have to select carefully
the scenes used for the evaluation at training time. For this reason, we use
the adversarial validation technique to select the correct scenes.

Adversarial validation consists of training a classifier that can detect if the
input data is coming from the training set or the validation set. Then, we
use the trained model to select a subset of samples that are from the training
set but are misclassified as part of the validation set or are likely to be within
it, so this set of scenes is used during training time to evaluate the model.
With this approach we are expecting to reduce overfitting on the training
data because we can choose the model that will perform well on the train
validation set and so, because of the adversarial validation is also likely to
perform well on the validation set.

For our implementation, we trained a logistic regression model to learn the
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differences between the training scenes and the validation scenes. Then, we
selected the scenes from the training set that were misclassified as part of
the validation set, or they were likely to be in the validation set.

4.3 Batch Averaging

Another parameter that has deep impact on the training process is the di-
mension of the batch. Generally, a big batch lead to more a stable training
and consequentially to better performance of the model. However, usually,
the batch size is limited to the amount of space that is available on the GPU
and so is not always possible to expand the batch dimension as our preference.

To overcome this problem, we use a technique called batch averaging that
allows to treats batch separately and so expand the batch dimension without
having an impact on the GPU memory.

accumulation_steps = 10
for i, (inputs, ground_truth) in enumerate(training_set):
predictions = model(inputs)
# Compute loss function
loss = loss_function(predictions, ground_truth)
# Normalize our loss
loss = loss / accumulation_steps
# Backward pass
loss.backward()
# Wait for several backward steps
if (i+1) % accumulation_steps ==
# Now we can do an optimizer step
optimizer.step()
# Reset gradients tensors
optimizer.zero_grad()

Listing 1: Example of batch averaging [25].

The basic idea is to process our standard batch as usual but, when it is
time to perform the backward and the optimizer step operation we introduce
a term called accumulation_step that as we can see from 1 normalize the loss
at every backward step and allows the optimizer to perform a step only every
accumulation_steps time. In this way, if we have the primary batch of 4 and
the accumulate step of 10 it would be like training using a batch size of 40
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but without having an impact on memory. In our implementation, we use a
batch size of 32 and an accumulation step of 10.

4.4 Resampling

One more important aspect to consider is how the scenes are sampled at
traning time. In 3.1.3.1 we have already discussed the data imbalance be-
tween the number of scenes which were relatively easy for the network to
learn (folowing lane) and more difficult scenarios (turning). Also from the
first experiments conducted we noticed that our intuition was correct, in fact,
the network was able to perform well on scenes in which the agents were sim-
ply going straight, but it is not able to understand more difficult scenes such
as a turning scenario. For this reason, we decided to change the sampling
methods using a weighting system; in this way, the more difficult scenes are
more likely to be sampled than before. However deciding the complexity of
a scene can be a non trivial task, so we implemented two different methods
for weighting every scenes.

4.4.1 Lane Density

As the first criteria for sampling, we chose the lane density. We define lane
density as the mean pixel value over the drivable area mask. So given drivable
mask of (500,500) pixels, where the non-drivable are has value 0 and the
drivable area as value 1, the lane density result in:

N N
> im0 ijo Dij
N2

= density = (4.2)

Then, analyzing the distribution over the all dataset at Figure 4.2 we see
that the center of the distribution is at almost 0.3. Therefore, examining
the scenes with that density (Figure 4.3), we notice that the complexity is
relatively low and thus easy to learn for the network. Hence, we decide to
set the threshold to divide simple and difficult scenes at 0.5.

4.4.2 Lane Curvature

The second approach is to use the lane curvature. In fact, we notice that
the majority of the complex scenes are happening with an high lane curva-
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Figure 4.3: Scenes with different lane density

ture, for example turning in a crossing roads. Also from Figure 4.4 we can
analyze the curvature distribution on the full dataset. Compared to the lane
density approach, we notice that the distribution his much less uniformly
distributed, this happens because the lane curvature is not able to capture
as many details as the lane density about the scene complexity. However,
we still believe that it is an interesting sampling method to analyze, since it
directly gives us access to scenes where the vehicle is turning or doing more
difficult manoeuvre than only going straight.

Thus, we decided to set the threshold at 0.012; this allows us to select scenes
with a certain level of complexity as we can see from Figure 4.5:
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Figure 4.5: Scenes with different lane curvature.

4.4.3 Weight Computation

Once the most relevant scenes are selected, we have to compute the weight
in order to let the weight sampler know which scene extract more frequently.

Thus, knowing the threshold described in 4.4.2 and 4.4.1, we can count the
number of scenes that are below or above the threshold. After that, knowing
the total number of samples N and the number of sample for each class Cypope
and Cheow We set the weight for the samples that are above the threshold
simply as:

N

Wabove = )
Cab
ove

(4.3)
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and :
N

Whelow = )
C’below

for those one below the threshold. Finally, those weights are used by the
weight sampler at training time to sample from the multinomial distribution.

(4.4)

4.5 Upsampling

The last technique that we used to improve the performance is data up-
sampling, which is commonly used to have more stable performances and to
reduce overfitting. For this reasons we implemented upsampling methods in
two different parts of the training process.

4.5.1 Upsample Data

As first, insipired by [2] were the authors used the perturbation of the input
data to generate more samples obtaining consequentially a model capable of
generalize in every situation. We used a similar approach, sampling the agent
state vector from a Gaussian distribution. N (y, 02) with o = 0.5. Thus, the
new features are:

vel N (vel, %)
acc | = | Nace, o?) |, (4.5)
0 _rate N (0_rate, o?)

In this way, we noticed that the model generalize better and extract only the
relevant features without overfitting.

4.5.2 Upsample Agent Features

The second upsample technique comes after analyzing the baselines network
structures. From Figure 3.5 is clear that there is a significant imbalance
between the features generate from the backbone and the agent state vector.
In fact, the agent state vector features are only 3 while using, for example, a
backbone as ResNet-18 the number of features extracted is 512. It is evident
that with such huge imbalance, the network might be unable to pay attention
to the features that are coming from the TV. For this reason, we decided to
upsample those features using a fully connected layer as in Figure 3.10. In
this way, the network is also able to learn a better representation of the agent
features. After having conducted some experiments, we have found that the
upsample factor of 10 was giving us good results.
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Evaluation

Model evaluation is a non-trivial task; in fact, choosing the metrics that can
capture the performance is not always easy. Thus, in order to evaluate our
models, we choose the following metrics that are already commonly used in
the behaviour prediction task [3, 22].

5.1 Metrics

Considering that the task is to predict the multimodal behaviour, for all the
metrics below described, we are going to differentiate each one depending on
the number of future trajectories considered, in our case, 1,5 and 10 modes.
Which means that for every metrics, we will have three value for considering
the n most likely predictions.

5.1.1 MinADE

The minimum Average Displacement Error measures the average of pointwise
L2 distance between the predicted trajectory and the ground truth. With
this metric, we can understand if the prediction is correct along the entire
trajectory,it is then computed as follows:

ty
1
MinADE, = min(————) Y [ly' = y"[l. (5.1)

‘eP, ty — 1t
yery Lf pred t=tpreq+1

where Py is the set of the most probable k trajectories.

47
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5.1.2 MinFDE

Minimum Final Displacement Error is the L2 distance between the final
points of the prediction and the ground truth. We use this value because
sometimes it is useful just to know where the agent is going to be, and you
are not interested in the full path. The metric is then computed as:

MinF DE), = min ||y — y"/|| (5.2)
y' €P

5.1.3 Miss Rate

With the Miss Rate, we define a prediction a miss if the maximum pointwise
L2 distance between the ground truth and the prediction is greater than 2
meters and can be computed as:

. t=t
Missy, = {1 minyep, (Mati,,,,

0 otherwise

ly' =yl > 2

(5.3)

5.1.4 OffRoadRate

Offroad Rate is defined as the fraction of trajectories that are not entirely
contained in the drivable area of the map. In this case, we always consider
all the trajectories predicted, thus is easier for a model with a lower number
of modes to have a low OffRoadRate and vice-versa.

5.2 Evaluation

We now evaluate the performance of our models comparing the impact of
each implementation described in 3.2.2 on the quality of the predictions.
The models performances are measured on the validation set of nuScenes
composed of 9041 samples where the network has to predict the possible
futures over the next 6s. Then the predictions previously generated are pro-
cessed computing the metrics up to the 10 most likely predictions. However,
in this chapter, we reported only up to the 5 most likely predictions because
there is not enough space on the text. For the complete tables, see Chapter
8.

5.2.1 Baselines

As first we evaluate the baselines described in the 3.2.1. In order to have a
more fair comparison between the dynamic models and the Deep Learning
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models, we also report the metrics for the constant velocity dynamic model.
Moreover, we decided to insert two different versions of MTP, one with 2
modes and another one with 10 modes.

name Heuristic MinFDEK1 MinFDEK5 MinADEK1 MinADEKS5 MissRateTopK 21  MissRateTopK 25 OffRoadRate

oracle 8.25 9.09 9.09 3.70 3.70 0.88 0.88 0.12
cv 10.22 11.21 11.21 4.61 4.61 0.91 0.91 0.14
mtp (2) 8.97 11.49 7.41 4.87 3.23 0.93 0.88 0.15
mtp (10) 9.41 12.66 6.72 5.51 3.08 0.97 0.93 0.42
covernet 8.27 10.95 5.55 4.98 2.80 0.95 0.92 0.61

Table 5.1: Baselines model evalation

From 5.1 we notice that the oracle is capable of generating good predic-
tions, however, because of the unimodal prediction, when we also consider
multiple modes the model is not able to perform at the same level of the other
models. Analyzing, the two MTPs we notice that the model with fewer modes
is able to focus more on generating the best possible prediction and so the
metrics such as MinFDEK1 and MinADEK1 are considerably lower than the
counterpart with more modes. However, the model with 10 modes is able to
better understand the all possibles scenarios, and so is capable to outperform
the version with 2 modes when we consider multiple predictions.

Regarding CoverNet, because of his trajectory set is capable of perform-
ing well in the multimodal scenario. However, because of the trajectory set
that does not consider the road structure, we can notice that is the model
with the highest OffRoadRate.

5.2.2 Resampling

We consider now the impact of a custom resampling method on the baseline
CoverNet and MTP(10). We examine both resampling methods described in
5.2.2. Thus, we have a version that uses the lane density 4.4.1 and another
that uses the lane curvature 4.4.2 to set the weights of each scene.

Analyzing 5.2 and 5.3 we notice a clear improvement in performance after
using the resampling methods previously described. Nevertheless, it is not
possible to define a method that performs better than the other one. While
MTP seems to be more affected by the curvature in every metrics considered
in the table below.
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name Heuristic MinFDEK1 MinFDEK5 MinADEK1 MinADEKS5 MissRateTopK 21 MissRateTopK 25 OffRoadRate
mtp 9.41 12.66 6.72 5.51 3.08 0.97 0.93 0.42
mtp_curvature 7.80 10.83 5.33 4.61 2.38 0.90 0.76 0.24
mtp_density 8.11 11.10 5.68 4.74 2.57 0.92 0.86 0.43

Table 5.2: MTP resampling impact

Examining the CoverNet table, the situation is the opposite as the previ-
ously described. Density resampling seems to affect much more the perfor-
mance while the curvature approach performs even slightly worse than the
basic sampling method.

name Heuristic MinFDEK1 MinFDEK5 MinADEKI MinADEK5 MissRateTopK_21 MissRateTopK_25 OffRoadRate
covernet 8.27 10.95 5.55 4.98 2.80 0.95 0.92 0.61
covernet_density 7.90 10.77 4.95 4.79 2.51 0.94 0.92 0.64
covernet_curvature 8.32 11.03 5.57 5.02 2.81 0.95 0.92 0.57

Table 5.3: CoverNet resampling impact

5.2.3 Memory

We start now modifying the input of the network using as additional infor-
mation the past agent state vector. As already shown in 3.2.2.1, the network
structures that we have implemented here can be considered as M'TP-based
structures in which the output is directly the coordinates plus their prob-
abilities. From now on, we decided not to continue further development
on CoverNet based models. Mainly because we believe that the MTP ap-
proach can learn better the different road dynamics, after all, the model is
not bounded to a set of predefined trajectories that can limit the ability of
the network to explore.

Therefore, from 5.6, we observe that the memory is playing a quite rele-
vant role in the prediction. In fact, almost all the metrics involved they had
a significant improvement over their memory-less counterpart.

name Heuristic MinFDEK1 MinFDEK5 MinADEK1 MinADEKS5 MissRateTopK 21 MissRateTopK_25 OffRoadRate
mtp_curvature 7.80 10.83 5.33 4.61 2.38 0.90 0.76 0.24
mmtp_curvature 7.78 10.85 5.24 4.56 2.35 0.94 0.78 0.35
mtp_density 8.11 11.10 5.68 4.74 2.57 0.92 0.86 0.43
mmtp_density 7.91 10.68 5.62 4.52 2.57 0.92 0.85 0.44

Table 5.4: Memory performance impact

5.2.3.1 Dual Attention

Another modification that we propose is to attend the concatenated features,
as explained in 3.10. In the table below, we notice that the attention layer
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helps to extract useful features from the concatenation between backbone
features and agent state vector features, leading to a final better prediction.

name Heuristic MinFDEK1 MinFDEK5 MinADEK1 MinADEKS5 MissRateTopK_21 MissRateTopK_25 OffRoadRate
mmtp_curvature 7.78 10.85 5.24 4.56 2.35 0.94 0.78 0.35
datt_mmtp 7.77 10.77 5.12 4.69 2.38 0.91 0.75 0.20

Table 5.5: Attention on feature concatenation impact

5.2.4 Loss

As described in 3.3 we decide to introduce an additional term in the loss in
order to detect feasible trajectories. We are now analyzing the impact of the
OffRoad loss.

name Heuristic MinFDEK1 MinFDEK5 MinADEK1 MinADEK5 MissRateTopK_21 MissRateTopK_25 OffRoadRate
datt_mmtp 7.7 10.77 5.12 4.69 2.38 0.91 0.75 0.20
datt_mmtp,y road 7.44 10.49 4.74 4.56 2.19 0.90 0.72 0.19
datt_mmtpane 7.99 10.76 5.33 4.80 2.61 0.92 0.84 0.31

Table 5.6: Attention on feature concatenation impact

It is observable that the OffRoad loss has a profound impact on improving
almost every aspect of the prediction, while the Lane loss has a negative
impact on the performance. We believe that this behaviour might be caused
due to the inability of the network to extract useful information from such
restrictive loss. In fact, both GAT 5.7 and DaNet 5.8 approaches they have
seen improvements using the Lane loss.

5.2.5 Graph Attention Network

We take now in consideration the Graph Attention Network for representing
the nearby agents interaction. From the table 5.7, we can extract two useful
information.

name Heuristic MinFDEK1 MinFDEK5 MinADEK1 MinADEK5 MissRateTopK 21  MissRateTopK_ 25 OffRoadRate
datt mmtp, s froad 7.44 10.49 4.74 4.56 2.19 0.90 0.72 0.19
datt_mmtpape 7.99 10.76 5.33 4.80 2.61 0.92 0.84 0.31
gat_mtp(10) 8.34 12.03 5.05 5.07 2.33 0.91 0.74 0.28
gat_mtpog froad(10) 8.02 10.95 5.64 4.78 2.55 0.90 0.72 0.20
gat mtp, froqa(20) 9.64 12.89 6.20 6.08 3.19 1.00 0.97 0.43
gat-mtpyene(10) 7.89 11.06 5.15 4.72 2.36 0.92 0.78 0.22
gat_mtpia.(4) 7.17 9.80 5.05 4.23 2.27 0.91 0.72 0.24

Table 5.7: Graph attention performance
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The first one is that the graph representation can interpret better a loss,
such as a lane loss, in fact, there is a clear improvement in performance be-
tween Lane and OffRoad loss. The second one is that the number of agents
considered has a deep impact on the performances (the number of agents
considered is represented in brackets). We immediately see that if we ask
the model to pay attention to too many agents, the model is not able to ex-
tract any more useful information. Therefore, we have found a good balance
considering 4 agents.

5.2.6 Backbone Attention

We assess here the attention modules inserted after the backbone feature
extractions described in 3.2.2.3. Where m_danetmtp is the DaNet version
that loop through the past frames while danetmpt is the model in which we
pass only one frame through the attention model.

name Heuristic MinFDEK1 MinFDEK5 MinADEK1 MinADEK5 MissRateTopK_21 MissRateTopK_25 OffRoadRate
danetmtp 10.35 12.25 9.54 548 4.23 0.97 0.92 0.29
m_danetmtp, s froad 9.94 12.12 8.31 5.71 3.88 0.97 0.91 0.20
m_danetmtpgne 8.91 11.46 6.80 5.30 3.18 0.95 0.86 0.17

Table 5.8: Danet performance

From 5.8 is clear that inserting the time dependencies trough multiple
frame processing, has helped to generate more reliable predictions. However,
none of those two models has overall good performances but analyzing the
predictions more in details we notice some useful findings that we will discuss
in the next section and are worth to report.

5.2.7 Performance on scenario

In order to understand more deeply how the different improvements have im-
pacted the performance, it might be useful to try to visualize the performance
among all dataset.

name Heuristic MinFDEK1 MinFDEK5 MinADEK1 MinADEK5 MissRateTopK_21 MissRateTopK_25 OffRoadRate
dattmtp 6.80 9.63 4.21 4.22 1.99 0.89 0.68 0.21
gat_mtp 6.59 8.88 4.75 3.86 2.15 0.90 0.70 0.27
mmtp 7.15 10.18 4.42 4.56 2.06 0.93 0.76 0.22
m_danetmtp 8.45 11.13 6.16 5.20 2.88 0.95 0.84 0.20

Table 5.9: Low complexity scenes

In Figure 5.1 we report the heuristic value for each scene, the points are
colored using the lane density where the blue dots they represent the more
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Figure 5.1: Heuristic metrics over lane density

complex scenario while the green dots are the simple one.

While in Figure 5.2 on the x-axis, we have the curvature to represent the
scenes difficulties. In both the representations we notice a trend in which the
DualAttention network tends to perform better in scenes with a low complex-
ity while the model with the Graph attention network can perform better in
scenes with high complexity.

Extracting the metrics separately for high complexity scene (lanedensity >
0.5) and low complexity scenes (lanedensity < 0.3) we observe a clear dif-
ference. From 5.9 and 5.10, we notice the ability of the Dual Attention and
memory MTP to have good performances on low complexity scenes while the
graph model outperforms the other approaches on complex scenes where the
interaction between agents are fundamental.

Those differences are caused because, with the graph, the model put more
emphasis on the relationship between agents while the dual attention model
we focus more on the agent state vector of the target vehicle. For this reasons
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Figure 5.2: Heuristic metrics over lane curvature
name Heuristic MinFDEK1 MinFDEK5 MinADEK1 MinADEK5 MissRateTopK_21 MissRateTopK_25 OffRoadRate
dattmtp 9.30 12.41 7.19 5.26 3.09 0.94 0.81 0.20
gat_mtp 8.92 11.88 6.97 5.02 2.98 0.93 0.78 0.24
mmtp 10.24 13.95 7.49 6.01 3.26 0.96 0.84 0.24
m_danetmtp 11.505 13.89 10.39 6.09 4.56 0.95 0.88 0.19

Table 5.10: High complexity scenes

we have such difference in performance depending on the scene structure.

Differently, the Danet approach is never really able to capture the in-
formation that is relevant for the prediction. In fact, from Figure 5.1d and
Figure 5.2d we can observe the overall worst performances with the points
that are more spread around.

However, from 5.10 and 5.9 we noticed that the Danet approach is always
able to perform better in terms of OffRoadRate which means that despite
the lower overall performances the model is able to understand better than
the others the road structure.
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5.3 Anecdotal analysis

It makes sense now to analyze some particular scenes that are representative
of the different improvements made with our modifications. In the follow-
ing frames the predictions are represented with the purple dots of different
dimension, where the dimension is directly proportional to their probability,
also the most likely prediction is represented with a green color while the
ground truth is the orange line.

5.3.1 Baselines

We can start briefly analyzing how the baselines prediction looks like com-
pared to our modified models. Therefore, we report here the 10 most likely
prediction for the baselines implemented.

From Figure 5.3 we notice that despite the lack of information coming from
the road structure, the Oracle is capable of generating a plausible prediction.
However, even though the model has access to the ground truth to choose
the best prediction, none of the dynamic models is capable of capturing a
correct predictions.

(a) Oracle (b) MTP (c) CoverNet (d) Gat MTP

Figure 5.3: Baselines comparison

For MTP, the model tries to generate some possible futures, but except
for few modes that are relatively close to the ground truth, the others are
almost unfeasible predictions both from a dynamic perspective and road
structure perspective. Instead, CoverNet is almost capable of choosing the
right trajectories, and also the others are relatively close to the real one,
however, because of the trajectory set that limits the possible predictions
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the network is limited to choose between a predefined set that is general and
not made for that specific situation. At the same time, Gat MTP (Figure
5.3d) predicts trajectories that are almost all possible futures and among
those predictions is capable of selecting a mode that is representative of the
ground truth.

5.3.2 Loss

Moving now to the loss impact, here we have two dual attention models that
are the same except for the loss that they have used while training; one is
trained with the OffRoad loss while the other one not. From Figure 5.4,
we notice that the model trained with the additional loss term is now able
to have a better understanding of the road structure predicting almost only
feasible trajectories.

(a) Non Offroad (b) Offroad

Figure 5.4: Offroad Performance Difference

5.3.3 Gat agents

Another relevant difference to check visually is how the number of agents
considered for Gat MTP impact the predictions. From Figure 5.5 is inter-
esting to notice how the model trained with 10 agents wrongly focus on the



CHAPTER 5. EVALUATION o7

(a) 10 agents considered (b) 4 agents considered

Figure 5.5: Agent impact

vehicle that is coming from the right while the other one is able to ignore it
and produce a prediction more realistic even if not optimal.

5.3.4 Backbone attention

It is now interesting to evaluate the models with the attention on the back-
bone. In fact, despite their poor performances, the model has interesting
behaviours.

(a) Single DaNet (b) Memory DaNet

Figure 5.6: Memory impact on DaNet
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Especially in the non-iterative attention, the network has learned to al-
ways try to explore new paths on the map even if those ones are not feasible
from a road structure point of view. From Figure 5.6 we can see that the
single DaNet tries to explore and go to the new road segment while the mem-
ory counterpart has learned the different time dependencies and follows the
most likely path.

5.3.5 Map relevant Scenes

Another aspect to examine is the level of understanding that the model has of
the road structure. Analyzing multiple map relevant scenes, we have noticed
that both the Graph and the Dual attention models tend to focus a lot on
the agent state vector and not enough on the features that are coming from

the backbone.

|\
I -H B

(a) Dual attention MTP ) GAT MTP Memory DaNet MTP

Figure 5.7: BEV relevant scene

For example, in Figure 5.7 we are in a quite difficult situation for the
network. In fact, there is only one road to follow, the agent is going quite
fast, and it has not started to turn yet. Therefore, to correctly predict the
future, the network has to rely only on the information that is coming from
the BEV analysis. Thus, it is quite clear that the only model that has
understood the road structure is the one with the attention on the backbone.

5.3.6 Agent relevant Scenes

On the other hand, having the attention on the backbone, the model tends
to not focus enough on the relevant features that are coming from the agent
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state vector. An example can be seen in Figure 5.8, where the situation is
relatively simple; in fact, all the other models manage to predict the correct
behaviour, while, the memory DaNet MTP model put too much attention
on the BEV. For this reason, his prediction is accurate from a direction
perspective. Still, it has failed to understand velocity and acceleration, and
so the most likely trajectory is far from the ground truth.

800

(a) Dual attention MTP (b) GAT MTP (c) DaNet MTP

Figure 5.8: Agent state relevant scene
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Discussion

From the previous chapter, we are now able to understand the difficulties of
the behaviour predictions. In facts, there are an infinite amount of possible
scenarios that are changing rapidly and in an unpredictable way due to the
human factor.

6.1 Scene based prediction

So, being able to understand which model suits in a specific scenario and
why it performs better in certain situations became a critical task to obtain
a reliable prediction.

Considering the previous chapter, we are able the understand a few things.
From 5.2.2 it is clear that one of the aspects that affect more the performances
is the scene that the network has to predict. In fact, showing more often the
difficult scenes has improved in a significative way the performances. Thus,
we understand that there are scenes that require a certain approach to im-
prove and scenes that require another one.

Therefore, we propose some structural methods to improve the performances.
In sec.5.2.3 we have injected information coming from the past; this allows
the network to understand what was the state vector in the previous seconds
and react as a consequence. With this approach, we notice a clear improve-
ment in basically every scenario, but in particular, this improvement is more
significant in scenes where the information that is coming from the vehicle
are more relevant than the understanding of the BEV.

However, not every scene is simple enough such that the agent state vector

60
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is sufficient for a reasonable interpretation of the situation. For this reason,
we decided to include also the nearby agents as input to the network, and
we let a graph attention network extract useful information out of it. This
approach is particularly useful because, with nuScenes, we are working on an
urban driving scenarios which are very complex, and the interaction between
agents is a crucial component. In fact, from 5.2.5 is clear that the network
can extract useful information from the other agents allowing the model to
generate a more reliable predictions.

Although, an interesting analysis comes from 5.2.7 where is evident the dif-
ferent performances of each model depending on the scenario that we are
considering. From, the two tables 5.9 and 5.10 we notice how the graph
model is able to perform better on complex scenarios while both the memory
MTP and the dual attention models are able to outperform on less complex
scenes, this difference can also be seen in Figure 5.1 and Figure 5.2. This
discrepancy in performance proves what we explained before about the differ-
ent representation between Dual Attention MTP and Graph Attention MTP,
where the first one is capable of a better understanding of the vehicle kine-
matic model and the second one is capable of capture relevant interactions
between different agents.

6.2 Road Structure

Another relevant component of a prediction model is a the ability to extract
useful information from the BEV. Thus, we propose two approaches to focus
more on the BEV. As first we introduce the OffRoad/Lane loss; that penal-
ize prediction that are not inside the drivable area forcing in this way the
network to predict feasible futures as we have seen in Figure 5.4.

The second approach that we propose is the use of an attention model on
the backbone using the DaNet [10] network in our model. From fig.5.7 it is
evident that the attention on the backbone has helped the model to have a
better understanding of the road. In fact, in a challenging situation such as
the one the previously mentioned, the model has to rely on the information
that is coming from the BEV, and it is clear that both the dual attention
model and the graph model are not able to extract enough useful information
from it.
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6.3 Future paths

As previously described, every approach that we have implemented has posi-
tive and negative aspects. But, we have learned that scenes are very different
among themselves and for this reason is very challenging to build a model
that is able to perform equally well in every possible scenario. In fact, we
have already seen some models that are able to outperform other models in
a certain type of scene and at the same time being outperformed in another
type of scene.

Thus, an interesting approach to follow could be a multi-task approach, in
this way the network will be able to react differently depending on the situ-
ation that is facing because it will have a different parts of the network that
are specialized for each particular task.



Chapter 7

Conclusions

With the adoption of self-driving cars, we expect to increase safety and at
the same time to reduce travel times avoiding situations such as traffic jams.
Therefore, to ensure an adequate level of safety, the vehicle should not be
able to see only the other vehicles. However, it should also be able to predict
the future movement of other agents.

Hence, also considering that our focus is on urban driving scenarios, the pre-
dictions follows a multimodality setting in which multiple possible futures
are predicted along with their probabilityies. As discussed in Chapter 2, we
evaluate also other different prediction representation. However, as we have
seen, those methods fails to understand the scenes complexity of an urban
driving scenario.

Then using as a starting point the two baselines MTP [5] and CoverNet
[22], we can summarize our contribution into four main parts.

At first, we notice analyzing the data distribution, that despite nuScenes
being based in an urban driving scenario, there is a relevant imbalance be-
tween scenes that are easy to learn for the model and scene that are not. So,
using custom resampling methods, we have been able to balance the situation
allowing the model to adapt better to each situation.

From the baselines, there were also problems of non used information. For
example, in none of the model implemented, neither the data from the past
nor the data form nearby agents is used. Therefore, as second contribution,
we propose a Transformer attention layer to attend past agent state vector.
This approach has shown to improve significantly the performance raising the
level of understanding of the network regarding the kinematic of the vehicle.
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As third improvement, we included the surrounding agents in the model
structure, to do that, we have implemented a graph attention layer that has
proven to be able to capture the interactions among the vehicles, increasing
the accuracy of the prediction, especially in those scenes where the interac-
tions are a determining component.

The last contribution concerns the level of understanding that the model
has of the road structure. First we have implemented an additional loss term
called OffRoad loss which penalizes forecasts that are outside the road struc-
ture. While, the second approach introduces an attention module on the
backbone features. Both methods have been shown to improve performance
in challenging situations where the agent state vector was not relevant for
prediction and the road structure played a central role.

In summary, we showed the heterogeneous nature of the behavior prediction
problem and demonstrated that by using attention methods, off-road losses
and customized sampling methods, the network learned to better adapt to
each scenario by generating more feasible predictions.
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Chapter 8

Appendix

In the next page are reported all the metrics up to the 10th prediction. The
table is rotate for make it more readable.
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